
- •Класс I. Известковые губки (calcarea, или calcispongia)
- •(Макросклеры)
- •Филогения типа Spongia
- •Класс I. Гидрозои (hydrozoa)
- •Подкласс I. Гидроидные (hydroidea)
- •118 Рис. 93. Стрекательные клетки. А — в покоящемся состоянии;
- •Подкласс III. Четырехлучевые кораллы (tetracorallia, или rugosa)
- •Подкласс IV. Табуляты (tabulata)
- •Тип гребневики (ctenophora)
- •Класс гребневики (ctenophora)
- •Гребневика (из Наумова): / — полушария с каплями липкого секрета, 2 — спиральная нить, 3 — мускульный тяж щупальца
- •Отверстие, 12 — копулятивная сумка, 13 — яичники. 14 — статоцист, 15 — хитиноидные челюсти,
- •169 Рис. 143. Строение личинок и партеногенетических поколений трематод
- •Raphyllidea):
- •Эмбриональные крючочки
- •Паразитизма
- •Дополнение к типу Plathelminthes. Mesozoa
- •Класс II. Дициемиды (DfCyemida)
- •Класс немертины (nemertini)
- •Отверстие, 13 — семенник, /3-—семяпровод, 14 — семяизвергательный канал, 15 — спикулы
- •Подкласс I. Аденофореи (adenophorea)
- •Подкласс II. Сецерненты (secernentea)
- •231 Рис. 198. А—схема организации Kinorhyncha (по Ремане); б — личинка
- •Дополнения к типу Nemathelminthes класс приапулиды (priapulida)
- •Филогения типа Nemathelminth.Es
- •Ского мешка, 5 — спинной мезентерий, 6 — внутренняя стенка целомического мешка,
- •Подкласс I. Бродячие (errantia)
- •Подкласс п. Сидячие (sedentaria)
- •Класс II. Пиявки (hirudinea)
- •Дополнения к типу Annelida класс эхиуриды (echiurida)
- •Филогения типа Annelida
- •Пора, 3, 4, 5 — различные участки канала,
- •Теннула, 4 — науплиальный глаз.
- •Железа, 6 — кишечник
- •Орган прикрепления, 5 — лицевой шнур в форме клубка
- •Антеннулы, 5— совокупительный орган, 6 — ногочелюсти, 7 — грудные ножки. 8 — яичник
- •Подкласс I. Симфилы (symphyla)
- •Подкласс II. Пауроподы (pauropoda)
- •Подкласс IV. Губоногие (chilopoda)
- •Класс II. Насекомые (insecta)
- •Комара (из Зеликмана): / — верхняя губа, 2 — мандибула. 3 — нижняя челюсть, 4 — гипофаринкс, 5—нижняя губа, 6 — «ижне-челюстной щупик, 7 — сяжки
- •Основание конечности
- •Эрнсту):
- •Хеолы (тончайшие ответвления без хитиновой выстилки)
- •Ные диски, дающие начало эпителию и мускулатуре средней кишки, 4 — ииагинальный диск слюнной железы, 5 — диск передней кишки
- •Класс трилобиты (trilobita)
- •Класс I. Мечехвосты (xiphosura)
- •Торых показаны пунктиром, а — акрон
- •С брюшной сторон (по Бялыницкому-Бируле):
- •Щитки сегментов, 9 — глаза
- •Филогения типа Arthropoda
- •Тип моллюски (mollusca)
- •Кутикула
- •468 Рис. 461. Схема типов асимметрии у разных Gastropoda (по Штемпелю). А — Prosobranchia Diotocardia; б — Prosobranchia Monotocardia; в — Pulmonata; г — Opisthobranchia:
- •Сеть легкого
- •Подкласс III. Легочные (pulmonata)
- •Или двустворчатые (lamellibranchia, или bivalvia)
- •Подкласс II. Двужаберные (d1branchia)
- •Филогения типа Mollusca
- •Класс I. Мшанки (bryozoa)
- •Дополнение к типу Tentaculata класс внутрипорошицевые (entoprocta, или kamptozoa)
- •Филогения типа Tentaculata
- •Ральная
- •Титулами Филогения типа Echinodermata
- •Тип погонофоры (pogonophora)
- •Содержание
Эмбриональные крючочки
197
цестодами и лишены, подобно последним, пищеварительной системы. Это обстоятельство послужило причиной того, что цестодообразных нередко относят к классу Cestoda как подкласс. Между тем цестодообраз-ные обладают рядом признаков, отличающих их от ленточных червей. Прежде всего это касается строения личинки — ликофоры (рис. 170.В), которая несет не 6 как онкосфера цестод, а 10 эмбриональных крючочков. В отличие от цестод церкомер ликофоры часто не отбрасывается, а сохраняется и у половозрелых особей. Все Cestodaria — нерасчлененные формы, обладающие единичным половым аппаратом. Половая система, как и у прочих плоских червей, гермафродитна и представлена многочисленными фолликулярными семенниками и одним двухлопастным яичником. Желточники развиты, матка открывается наружу самостоятельным отверстием. Имеется влагалище. Все прочие системы органов устроены принципиально так же, как у ленточных червей.
Отряд 1. Gyrocotylidea. Паразитирует в кишечнике древних акуловых рыб — химер. Тело гирокотилид уплощено, края имеют фестончатые разращения (рис. 170,5). На заднем конце тела расположен прикрепительный диск в виде складчатой розетки, на переднем — небольшая присоска. Прикрепительная розетка иннервируется мощным нервным кольцом, которое соединяет боковые нервные стволы. Развитие идет с метаморфозом. Вылупляющаяся из яйца личинка имеет на заднем конце диск с крючочками (церкомер), из которого в дальнейшем возникает прикрепительная розетка взрослой формы.
Своеобразие отр. Gyrocotylidea заключается в том, что представители его сочетают признаки классов моногеней и ленточных червей, занимая как бы промежуточное положение между ними.
Отряд 2. Amphilinidea. Наибольший интерес представляет вид Amphilina fo-liacea (рис. 170, Л) с овальным, листовидным телом, достигающим 5 см длины. Паразит встречается в осетровых рыбах Волжско-Каспийского бассейна и рек Сибири. В половозрелом состоянии живет не в кишечнике, а в полости тела хозяина. Промежуточными хозяевами для амфилины служат некоторые виды бокоплавов (отр. Amphipoda) и расщеп-ленноногих рачков (отр. Mysidacea). В полости их тела живет личинка типа процеркоида, которая после съедания рачков рыбой превращается в половозрелую стадию. В связи с необычным местообитанием взрослой Amphilina (полость тела вместо кишечника) некоторые ученые трактуют взрослую амфилину как пеотеническую личинку типа плероцер-коида, приобретшую способность размножаться половым путем.
Филогения плоских червей и вопрос о происхождении
Паразитизма
Плоские черви связаны в своем происхождении с предками примитивных кишечнополостных. В основании филогенетического древа Plathelminthes, несомненно, стоит класс ресничных червей (Turbellaria), возможные пути происхождения которых от гипотетических планулооб-разных организмов рассмотрены выше (с. 161). Примитивным строением, как указывалось, характеризуются бескишечные турбеллярии (Асое-1а), которые и дали, по-видимому, начало остальным ресничным червям. Однако наибольший интерес для понимания филогенетических взаимоотношений в пределах типа Plathelminthes в целом представляют прямокишечные турбеллярии. Схематизируя описанную выше (с. 159) организацию Rhabdocoela, мы получаем своего рода обобщенный прототип всех плоских червей в виде животного с простой прямой кишкой, мозгом, 2—6 нервными стволами, парой протонефридиев, парными гонадами и хитинизированиым копулятивным аппаратом. От этого прототипа могут быть произведены другие, более специализированные в разных отношениях группы Plathelminthes. По-видимому, все современные паразитические плоские черви ведут свое начало от свободноживущих форм, общих с предками прямокишечных турбеллярии и морфологически близких к ним. Эволюция этих предковых форм шла в трех оспов-
198
ных направлениях: одна ветвь дала начало современным Rhabdocoela, две другие — пошли по пути приспособления к паразитическому образу жизни.
Многим современным турбелляриям и, в частности, прямокишечным свойственна способность к сожительству (симбиозу) с другими животными. Известны виды Rhabdocoela, находящие себе убежище в выводковой камере или жаберной полости некоторых ракообразных. Есть и настоящие паразитические виды, поселяющиеся в моллюсках, морских звездах, рыбах и т. д. Это позволяет предполагать, что и предки прямокишечных турбеллярий при возникновении подходящих условий могли становиться паразитами.
Переход свободноживущих животных к паразитизму может осуществляться несколькими путями. Важное значение в этом плане имеют различные типы симбиоза, в том числе так называемое «квартирантст-во», при котором один из партнеров, отличающийся более мелкими размерами, находит себе убежище на теле другого более крупного животного. Такими «квартирантами», возможно, были турбелляриеобраз-ные предки современных моногеней. Оседая на поверхности жабр, кожи или плавников рыб, они первоначально питались оседавшими здесь же мелкими беспозвоночными или слизью, выделяемой покровами рыбы. Вероятно, что такие квартиранты вместо того, чтобы довольствоваться не всегда имеющейся посторонней пищей, начнут делать ранки на теле хозяина и найдут в нем неистощимый источник питательного материала. Постепенно перейдя к питанию кровью и тканями хозяина, они станут, таким образом, настоящими эктопаразитами.
Переход древних моногеней к паразитизму был связан, вероятно, с появлением хрящевых рыб (химер и акул), следовательно, это могло быть приурочено к силуру или девону. Главное направление эволюции кл. Monogenoidea выражается в совершенствовании прикрепительного аппарата, обеспечивающего постоянную связь паразита с телом хозяина.
В отдельных случаях эктопаразитизм может далее вести к внутреннему паразитизму. Так, многие моногеней всю жизнь проводят на жабрах рыб. Такой же образ жизни ведут на жабрах головастиков личинки лягушачьей многоустки и поколение червей этого вида, успевающее завершить развитие до окончания метаморфоза хозяина-. При зарастании жабр головастика личинки следующей генерации многоусток мигрируют в мочевой пузырь молодой лягушки. Процесс, который совершается здесь в течение индивидуального развития одного из поколений, надо думать, имел место и в филогении рода Polystoma, предки которого жили либо на рыбах, либо на водных амфибиях, всю жизнь дышащих жабрами.
Важно отметить и то, что некоторые виды современных моногеней паразитируют в ротовой полости, глотке и пищеводе рыб. Очевидно, в ходе эволюции имело место постепенное перемещение червей, исходно паразитировавших на жабрах, в ротовую полость и далее по пищеварительному тракту. В филогенезе — это вероятный путь перехода от экто-паразитизма к паразитированию в кишечнике хозяина. Именно таким путем от древних моногенообразных предков могли возникнуть классы цестод и цестодэобразных. Последние представляют в этом смысле особый интерес, так как в организации паразитирующего в кишечнике химер Gyrocotyle удивительным образом сочетаются признаки строения моногенетических сосальщиков и ленточных червей. По-видимому, Gyrocolyle можно рассматривать как промежуточное звено между кл. Cestoda и кл. Monogenoidea. Филогенетическая близость этих трех классов находит подтверждение в наличии у них церкомера, отсутствую-
1-99
щего у трематод и турбеллярий. Крайне характерно для эволюции цестод и цестодообразных вызванное эндопаразитическим образом жизни упрощение их организации, проявляющееся в полном исчезновении пищеварительной системы и органов чувств и в значительном увеличении продуктивности их половой системы.
Жизненные циклы представителей Monogcnoidca, Cestoda и Cestoda-ria проходит с метаморфозом, но без гетерогонии. В отдельных случаях (эхинококк) вторично возникает метагенез как средство для увеличения потомства. В ходе эволюции цестод и некоторых цестодообразных (ам-филина) возникли промежуточные хозяева, играющие роль передаточного звена, необходимого для заражения окончательных хозяев — позвоночных. В расселении эктопаразитов участие промежуточных хозяев не дает никаких преимуществ. Вероятно, именно с этим связано отсутствие промежуточных хозяев в жизненном цикле моногеней.
Становление в филогенезе современного класса трематод шло, по-видимому, несколько иначе, хотя в основе приспособления к паразитизму и здесь лежали симбиотические отношения. Жизненный цикл современных сосальщиков не может осуществляться без обязательного участия моллюсков. Вероятно, что именно моллюски и были филогенетически первыми хозяевами трематод. Нетрудно представить возникновение симбиоза между моллюсками и свободпоживущими предками ди-генетичсских сосальщиков. Личинки последних, похожие на прямокишечных турбеллярий, вероятно, обитали вблизи дна, под камнями, или использовали в качестве укрытия раковины моллюсков. При этом они могли легко попадать в жаберную полость моллюсков (с. 454) и поселяться там, становясь, таким образом, квартирантами. Разумеется, такой переход от свободного существования к квартирантству должен был совершаться очень медленно, и личинки на протяжении длительного времени сохраняли еще связь с внешней средой. В дальнейшем такие квартиранты, первоначально питавшиеся, вероятно, независимо от моллюсков, могли перейти к питанию его кровью, становясь, таким образом, на путь адаптации к паразитизму. Постепенно это должно было привести к переселению паразитов внутрь тела моллюска. Защищенные организмом хозяина от неблагоприятных воздействий внешней среды, они получили вместе с тем постоянный источник пищи в виде соков и тканей хозяина. Это обусловило новое направление эволюции предков трематод, выразившееся в постепенном и все более глубоком упрощении их организации и ускорении созревания. Личинки, которые раньше покидали своего хозяина и достигали половой зрелости во внешней среде, перестали выходить наружу и начали размножаться в теле хозяина. Так как, по-видимому, у предков трематод долгое время еще сохранялось и свободноживущее поколение, то жизненный цикл приобрел характер гетерогонии, т. е. чередования двух различающихся половых поколений. Разница же заключалась в том, что особи паразитического поколения под влиянием паразитизма упростились и из гермафродитов превратились в партеногенетических самок, тогда как свободное поколение оставалось гермафродитным.
С появлением костистых рыб в верхнем триасе жизненный цикл предков трематод начал осуществляться с участием не одного, а двух хозяев. Столь «поздний» переход гермафродитного поколения к паразитизму находит свое отражение в том, что оно сохранило еще все черты организации, свойственные свободноживущим плоским червям (сложные половая и выделительная системы, пищеварительная система и т. д.).
Жизненный цикл с участием двух хозяев — моллюска и позвоночного, характерный, например, для печеночной двуустки, обычно рассмат-
200
ривают как исходный примитивный тип жизненного цикла. По-видимому, лишь много позднее установился характерный для большинства современных дигенетических сосальщиков жизненный цикл, который проходит с участием трех хозяев. При этом появление второго промежуточного хозяина, служащего пищей окончательному, рассматривают как приспособление, обеспечивающее заражение последнего.