Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
метод МО.doc
Скачиваний:
60
Добавлен:
10.02.2015
Размер:
190.98 Кб
Скачать

9. Метод молекулярных орбиталей

Основные положения метода молекулярных орбиталей

Электронное строение гомоядерных двухатомных молекул и ионов

Электронное строение гетероядерных молекул и ионов

Задачи для самостоятельного решения

Основные положения метода молекулярных орбиталей

1. В результате линейной комбинации две атомные орбитали (АО) формируют две молекулярные орбитали (МО) – связывающую, энергия которой ниже, чем энергия АО, и разрыхляющую, энергия которой выше энергии АО

2. Электроны в молекуле располагаются на молекулярных орбиталях в соответствии с принципом Паули и правилом Хунда.

3. Отрицательный вклад в энергию химической связи электрона, находящегося на разрыхляющей орбитали больше, чем положительный вклад в эту энергию электрона на связывающей МО.

4. Кратность связи в молекуле равна деленной на два разности числа электронов, находящихся на связывающих и разрыхляющих МО.

5. С повышением кратности связи в однотипных молекулах увеличивается ее энергия связи и уменьшается ее длина.

Если при образовании молекулы из атомов электрон займет связывающую МО, то полная энергия системы понизится, т.е. образуется химическая связь. При переходе электрона на разрыхляющую МО энергия системы повысится, система станет менее устойчивой (рис. 9.1).

Рис. 9.1. Энергетическая диаграмма образования молекулярных орбиталей из двух атомных орбиталей

Молекулярные орбитали, образованные из s-атомных орбиталей, обозначаются s. Если МО образованы рz-атомными орбиталями – они обозначаются  z. Молекулярные орбитали, образованные рx- и рy-атомными орбиталями, обозначаются  x и  y соответственно.

При заполнении молекулярных орбиталей электронами следует руководствоваться следующими принципами:

1. Каждой МО отвечает определенная энергия. Молекулярные орбитали заполняются в порядке увеличения энергии.

2. На одной молекулярной орбитали может находиться не более двух электронов с противоположными спинами.

3. Заполнение молекулярных квантовых ячеек происходит в соответствии с правилом Хунда.

Экспериментальное исследование (изучение молекулярных спектров) показало, что энергиямолекулярных орбиталей возрастает в следующей последовательности:

 1s <  *1s <  2s < *2s <  2pz <  2рх =  2ру <  *2рх =  *2ру <  *2pz.

Звездочкой (*) в этом ряду отмечены разрыхляющие молекулярные орбитали.

У атомов В, С и N энергии 2s- и 2p-электронов близки и переход 2s-электрона на молекулярную орбиталь 2pz требует затраты энергии. Следовательно, для молекул В2, С2, N2 энергия орбитали  2pz становится выше энергии орбиталей  2рх и  2ру:

 1s <  *1s <2s <  *2s <  2рх =  2ру <   2pz <  *2рх =  *2ру <  *2pz.

При образовании молекулы электроны располагаются на орбиталях с более низкой энергией. При построении МО обычно ограничиваются использованием валентных АО (орбиталей внешнего слоя), так как именно они вносят основной вклад в образование химической связи.

Электронное строение гомоядерных двухатомных молекул и ионов

Процесс образования частицы H2+ можно представить следующим образом:

Н[1s] + Н+  H2+[ 1s].

Таким образом, на связывающей молекулярной  -орбитали располагается один электрон.

Кратность связи равна полуразности числа электронов на связывающих и разрыхляющих орбиталях. Значит, кратность связи в частице H2+ равна (1 – 0):2 = 0,5. Метод ВС, в отличие от метода МО, не объясняет возможность образования связи одним электроном.

Молекула водорода имеет следующую электронную конфигурацию:

H2[( 1s)2].

В молекуле H2 имеется два связывающих электрона, значит, связь в молекуле одинарная.

Молекулярный ион H2- имеет электронную конфигурацию:

H2 [( 1s)2( *1s)1].

Кратность связи в H2 составляет (2 – 1):2 = 0,5.

Рассмотрим теперь гомоядерные молекулы и ионы второго периода.

Электронная конфигурация молекулы Li2 следующая: