Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

литература / Крухмалев В.В., Гордиенко В.Н. Основы построения телекоммуникационных систем и сетей, 2004

.pdf
Скачиваний:
91
Добавлен:
08.07.2023
Размер:
12.36 Mб
Скачать

поверхности изменяется. Особенно большое значение имеет сопротивление земли вблизи основания антенны. Для улучшения проводимости этого участка применяют металлизацию земли путем закапывания в нее металлических листов, проводов, путем улучшения химического состава почвы, пропитывая ее различными солями.

а)

б)

Рис. 13. Несимметричный четвертьволновой вибратор

Опыт показывает, что нет надобности осуществлять полную металлизацию земли, достаточно хорошо работает система радиальных расходящихся проводов, закопанных в землю на глубину 20...50 см. Качество металлизации улучшается, если радиальные провода соединяются между собой перемычками. Часто заземление заменяют системой проводов, не зарытых, а поднятых над Землей, называемой противовесом. Последний должен достаточно хорошо экранировать антенный провод от Земли, играя роль хорошо проводящей поверхности. Он обычно дает худшие результаты, но на передвижных радиостанциях является единственным выходом из положения. Обычно в качестве противовеса используется корпус автомобиля, на котором располагается радиостанция. Таким же образом поступают при необходимости установки радиостанции на каменистом грунте.

Основные характеристики и параметры антенн. Излучающая мощность (Ри) - мощность электромагнитных волн, излучаемых антенной в свободное пространство. Это активная мощность, так как она рассеивается в пространстве, окружающем антенну. Следовательно, излучаемую мощность можно выразить через активное сопротивление, называемое сопротивлением излучения

где / а - эффективный ток на входе антенны.

Сопротивление излучения характеризует способность антенны к излучению электромагнитной энергии и качество антенны в большей степени, чем излучаемая ею мощность, поскольку последняя зависит не только от свойства антенны, но и от создаваемого в ней тока.

Мощность потерь (Рп) - мощность, бесполезно теряемая передатчиком во время прохождения тока по проводам антенны, в земле и предметах, расположенных вблизи антенны. Эта мощность также является активной и может быть выражена через активное сопротивление антенны, называемое сопротивлением потерь

Мощность в антенне а) - мощность, подводимая к антенне от передатчика. Эту мощность можно представить в виде суммы излучаемой мощности и мощности потерь Ра = Ри + Рп.

Коэффициент полезного действия (КПД) антенны, равный

 

Р

Р

'

'

р

Р +Р

 

а

т'п

Входное сопротивление антенны - сопротивление на входных зажимах антенны. Оно имеет реактивную и активную составляющие. При настройке в резонанс антенна представляет для генератора чисто активную нагрузку и используется наиболее эффективно.

Направленность антенны - способность излучать электромагнитные волны в определенных направлениях. Об этом свойстве антенны судят по диаграмме направленности, которая графически показывает зависимость напряженности поля или излучаемой мощности от направления. Обычно пользуются нормированными диаграммами направленности, для которых величины, характеризующие напряженность поля или мощность излучения, выражены не в абсолютных значениях, а ограничиваются диаграммами направленности в двух плоскостях: горизонтальной и вертикальной.

На рис. 14, а показана диаграмма направленности симметричного вибратора в горизонтальной плоскости, а на рис. 14, б и в - в вертикальной плоскости в полярной и прямоугольной системах координат соответственно.

Шириной диаграммы направленности называют угол 20 (см. рис. 14, б, в), в пределах которого мощность излучения уменьшается более чем в 2 раза по сравнению с мощностью в направлении максимального излучения. Так как мощность пропорциональна квадрату напряженности поля, то границы угла раскрыва диаграм-

мы направленности определяются величиной = 0,707 от напря- л/2

женности поля в направлении максимального излучения.

X

( у

Е / Е М АХ

а)

Е/ЕМАХ

Главный лепесток

0,707 Г \

 

 

180'

20

0

в)

 

б)

Рис. 14. Диафамма направленности симметричного вертикального вибратора

Направление максимального излучения антенны называется главным направлением (см. рис. 14, в), а соответствующий ему лепесток - главным. Остальные лепестки являются боковыми.

Коэффициент направленного действия (й) представляет отношение плотности потока мощности Пи, излучаемой данной антенной в определенном направлении, к плотности потока мощности Пн, которая излучалась бы абсолютно ненаправленной в любом направлении при условии равенства общей излучаемой мощности в обеих антеннах. НаибольшЬй интерес представляет коэффициент направленного действия в направлении максимального излучения:

0 = П

Поскольку коэффициент направленного действия (КНД) не учитывает коэффициент полезного действия (КПД) реальной антенны, на практике пользуются параметром, называемым коэффициентом усиления (КУ), который связан с КНД соотношением 0 = 0?]. Коэффициент усиления показывает, во сколько раз следует уменьшить мощность, подводимую к антеннам по сравнению с мощностью, подводимой к точечной (абсолютно ненаправленной), КПД которой считается равным единице, чтобы напряженность поля в точке приема оставалась неизменной. КУ дает полную характеристику антенны: он учитывает, с одной стороны, концентрацию энергии в определенном направлении благодаря направленным свойствам антенны, а с другой - уменьшение излучения вследствие потерь мощности в антенне.

Преимущественное излучение антенн в заданном направлении эквивалентно увеличению мощности передатчика. Следовательно, направленность передающей антенны весьма желательна.

Полосой пропускания антенны, или ее рабочим диапазоном, называется интервал частот, в котором ширина главного лепестка диаграммы направленности и уровни боковых лепестков не выходят из заданных пределов, коэффициент усиления остается достаточно высоким, а согласование с фидерным трактом существенно не ухудшается. Так, в сантиметровом диапазоне волн полоса пропускания антенны 15...20 % от средней частоты.

Для снижения переходных шумов в каналах из-за наличия попутного потока в антенно-фидерном тракте (АФТ) коэффициент отражения в точке соединения антенны с фидером должен быть мал. В современных АФТ стараются получить коэффициент стоячей волны ниже 1,1 ...1,2.

Коэффициент защитного действия (КЗД) вводится для характеристики степени ослабления антенной сигналов, принятых с побочных направлений, и определяется по формуле Кзд=С^ш/010б, где Этаж и Опо6 - коэффициенты усиления антенны в направлении главного лепестка диаграммы направленности и в побочном направлении. КЗД очень важен для обеспечения электромагнитной совместимости различных систем радиосвязи.

Антенны метровых, дециметровых и сантиметровых волн. В диапазоне этих волн преимущественно используются антенны, обладающие направленными свойствами хотя бы в одной плоскости. При малой длине волны такие антенны получаются достаточно компактными, что дает возможность делать их вращающимися и тем самым достигать значительного выигрыша в мощности и снижения взаимных помех радиостанций, осуществления связи по любым желаемым направлениям.

Вдиапазоне метровых волн наиболее часто используются различные симметричные и несимметричные вибраторы.

Втехнике телевизионного приема самое широкое применение находит

петлевой вибратор Пистолькорса (рис. 15). Этот вибратор можно рассматривать как два полуволновых синфазных вибратора, расположенных на малом расстоянии друг от друга. В точке с вибратора располагается пучность тока и узел напряжения, что соответствует режиму короткого замыкания. В точках Ь и б, отстоящих от с на 0,25Х, образуется узел тока и пучность напряжения. На зажимах антенны ^ и е возникает пучность тока.

Наличие узла напряжения в точке с позволяет крепить вибратор в этой точке к стреле или мачте непосредственно без изолятора.

0 , 5 X

а)

б)

Рис. 15. Петлевой вибратор Пистолькорса (а) и его диаграмма направленности (б)

Антенны на основе дипольного и петлевого вибраторов обычно могут обеспечить качественный прием телевизионных сигналов на сравнительно небольших расстояниях от телецентра, так как они являются слабонаправленными (рис. 15). Для приема на большие расстояния или при неудовлетворительных условиях приема на малые расстояния применяются более сложные антенны, имеющие лучшую направленность.

В диапазоне метровых волн в качестве направленных антенн большое распространение получили антенны типа «волновой канал». Антенна этого типа (рис. 16), состоит из активного вибратора А, рефлектора Р и нескольких директоров ДЛ, Д2 и ДЗ. Из приведенной на рис. 16, б диаграммы

направленности видно, что коэффициент усиления этой антенны довольно высок, и она не будет реагировать на помехи с других направлений.

Д 1

Д 2

Д З

На телецентр

Рис. 16. Антенна типа «волновой канал» (а) и ее диаграмма направленности (б)

П

Рис. 17. Рупорная антенна

(10...20) А.

Рис. 18. Зеркальная параболическая антенна

Рис. 19. Рупорно-параболическая антенна

Рис. 20. Перископическая антенна

Антенна этого типа может работать и как передающая антенна. Активный вибратор А в этом случае излучает электромагнитное поле как в направлении рефлектора, так и в направлении директоров. Под воздействием этого поля в рефлекторе наводится ток, который создает вторичное поле - поле излучения рефлектора. Если длину рефлектора выбрать равной (0,51 ...0,53)Х, а расстояние между рефлектором и активным вибратором (0,15...0,25)Х, то вторичное поле, созданное рефлектором, будет опережать по фазе поле активного вибратора на угол около 90°. Результи-

рующее поле за рефлектором будет равно разности напряженностей полей, созданных активным вибратором и рефлектором. В главном направлении -

направлении директоров и далее - поле от активного вибратора и рефлектора будет складываться в одной фазе и результирующее поле увеличится. В реальной антенне опережение фазы тока в рефлекторе несколько отличается от 90°, а амплитуда тока в рефлекторе несколько меньше, чем в активном вибраторе. Поэтому некоторая часть энергии излучается антенной за рефлектор.

Директоры антенны возбуждаются результирующим полем активного вибратора и рефлектора. Для того чтобы вторичное поле директоров повышало напряженность поля в главном направлении, наведенные в них токи должны отставать по фазе от тока активного вибратора. Это достигается соответствующим выбором длин директоров и их взаимным расположением. Длины директоров выбирают равными (0,41 ...0,45)Х. Расстояние между директорами и первым директором и активным вибратором выбирают равным (0,1 ...0,34)Я. С уменьшением расстояний между активным и пассивным вибраторами ток в пассивных вибраторах увеличивается, но при этом за счет влияния последних сильно уменьшается входное сопротивление активного вибратора. Для облегчения согласования антенны с фидером активный вибратор часто выполняют петлевым.

Свойствами антенны обладает и открытый конец волновода. Так как открытый волновод плохо согласован со свободным пространством, то значительная часть электромагнитной энергии отражается от его конца и возвращается обратно к источнику (коэффициент отражения не менее 0,25...0,3).

Для улучшения согласования волновода со свободным пространством и создания более направленного излучения применяются рупорные антенны, которые образуются плавным увеличением размеров поперечного сечения волновода с помощью рупора (рис. 17). В диапазоне дециметровых и сантиметровых волн широко применяются антенны такого типа.

Направленность рупорной антенны увеличивается с ростом площади раскрыва рупора. В качестве самостоятельных антенн рупоры применяются редко, но часто входят в конструкцию многих более сложных антенн. Одной из них является зеркальная параболическая рефлекторная антенна (рис. 18), где роль отражателя выполняет металлическое зеркало, имеющее форму параболоида вращения или параболического цилиндра. При этом антенна излучает почти параллельный пучок лучей. Коэффициент направленного действия таких антенн очень высок и достигает 104.

Недостаток рассмотренной антенны состоит в том, что часть энергии, отраженной от зеркала, попадает обратно через рупор в волновод. Это снижает эффективность передачи энергии и приводит к искажениям пере-

даваемого сигнала. От этого недостатка свободна рупорно-параболическая антенна (рис. 19).

Из волновода 1 высокочастотная энергия поступает в пирамидальный рупор 2, являющийся облучателем сегмента параболоида вращения 3. Излученные антенной волны получаются плоскими, так как фазовый центр рупора, расположенный в его вершине, находится в фокусе параболоида. Для хорошего согласования рупора с волноводом угол раскрыва а выбира-

ется равным 30...40°, а длина рупора / = 50Х. Коэффициент усиления антенны растет с возрастанием площади раскрыва антенны S. При площади раскрыва 6...8 м2 коэффициент усиления равен 104. В это случае ширина диаграммы направленности равна примерно 2 как в горизонтальной, так и в вертикальной плоскостях.

Разновидностью зеркальных антенн являются перископические антенны (рис. 20), позволяющие при помощи зеркал передавать высокочастотную энергию на вершину башни без линии или волновода. Поступающая от передатчика энергия излучается рупорной антенной в сторону эллипсоидного зеркала 3, расположенного у подножия мачты под углом 45° к горизонту. Зеркало отражает падающие на него волны перпендикулярно вверх на плоское зеркало, установленное на вершине мачты под углом 45°. Вторым зеркалом волны отражаются в нужном направлении. Коэффициент полезного действия передачи энергии в перископической антенне - около 50 %, что выше, чем, если бы энергия подавалась наверх по волноводу.

Вопросы и задачи для самоконтроля

1.Классификация диапазона радиочастот.

2.Назовите основные элементы многоканальной радиосистемы передачи и укажите их назначение.

3.Принципы классификации радиосистем передачи.

4.Назовите основные схемы организации радиосвязи и радиосетей, их классификация.

5.Назовите основные элементы радиоретранслятора и укажите их назначение.

6.Укажите основные признаки классификации радиосистем передачи.

7.Физическая сущность дифракции и интерференции радиоволн.

8.Атмосфера Земли и ее основные сферы.

9.Особенности распространения ультракоротких волн.

10.Высота расположения передающей антенны телецентра равна 110 м, расстояние до пункта приема телевизионного сигнала равна 250 км. Определить необходимую высоту установки приемной антенны.

11.Назовите основные параметры и характеристики антенн и поясните их физическую сущность.

Л е к ц и я 16

Построение радиорелейных и спутниковых линий передачи

Основные понятия и определения. Классификация радиорелейных линий передачи. Принципы многоствольной передачи

Радиолиния передачи, в которой сигналы электросвязи передаются с помощью наземных ретрансляционных станций, называется радиорелейной линией передачи. Радиорелейная линия передачи (РРЛП) представляет собой цепочку приемопередающих радиостанций (оконечных, промежуточных, узловых), которые осуществляют последовательную многократную ретрансляцию (прием, преобразование, усиление и передачу) передаваемых сигналов.

Радиорелейная линия передачи, соседние станции которой размещаются одна от другой на расстоянии прямой видимости между антеннами этих станций, называется РРЛП прямой видимости (рис. 1). Здесь приняты следующие обозначения:

ОРС - оконечная радиорелейная станция, обеспечивающая преобразование отдельных подлежащих передаче сигналов в диапазоне частот радиосигнала, объединения их в общий радиосигнал и передачу его в среду распространения, а также прием встречного радиосигнала, разделение его на отдельные принимаемые сигналы, их преобразования и выдачу потребителю; ПРО - промежуточная радиорелейная станция, обеспечивающая прием, преобразование, усиление или регенерацию и последующую передачу радиосигнала; УРС - узловая радиорелейная станция, обеспечивающая разветвление и объединение потоков сообщений, передаваемых по разным РРЛП, на пересечении которых и располагаются УРС. К УРС относятся также станции РРЛП, где осуществляется ввод и вывод телефонных, телевизионных и других сигналов.

На ОРС и УРС всегда имеется технический персонал, который обслуживает не только эти станции, но и осуществляет контроль и управление с помощью специальной системы телеобслуживания ближайшими ПРС. Участок РРЛП (300...500 км) между ОРС (УРС)

делится примерно пополам так, что одна часть ПРС входит в зону телеобслуживания одной ОРС (УРС), а другая часть ПРС обслужи-

Радиорелейная линия передачи, в которой используется рассеяние и отражение радиоволн в нижней области тропосферы при взаимном расположении соседних станций, называется тропосферной радиорелейной линией передачи (ТРРЛП) (рис. 2).

Рис. 2. Тропосферная радиорелейная линия передачи

Радиолиния передачи, в которой используются космические станции, пассивные спутники или иные космические объекты, называется космической линией передачи.

Космическая линия передачи, осуществляющая электросвязь между земными станциями этой линии с помощью установленных на искусственных спутниках Земли ретрансляционных станций или пассивных спутников, называется спутниковой линией передачи (СЛП) (рис. 3). Здесь приняты такие обозначения: ЗС - земная станция, т.е. станция спутниковой линии передачи, расположенная на земной, водной поверхностях или в основной части земной атмосферы и предназначенная для космической линии передачи; КС - космическая станция, расположенная на объекте, который находится за пределами основной части земной атмосферы; ИСЗ - искусственный спутник Земли.

Соседние файлы в папке литература