
- •Билет № 1.
- •1. Основные понятия термодинамики. Термодинамические системы: определение, классификация
- •26) Сложные липиды – глицерофосфолипиды. Строение и функции фосфатидилсерина, фосфатидилэтаноламина, фосфатидилхолина и фосфатидилинозитола.
- •23. Дисперсные системы, их классификации
- •Классификация дисперсных систем по агрегатному состоянию фаз
- •28)Углеводы. Классификация. Функции
- •3. Скорость химической реакции, факторы на нее влияющие
- •3. Температура. При повышении температуры на каждые 10°c скорость реакции возрастает в 2-4 раза (Правило Вант-Гоффа).
- •29)Моносахариды. Классификация. Хим. Свойства. Окислительно-восстановительные реакции.
- •I. Реакции по карбонильной группе
- •1. Окисление.
- •2. Восстановление.
- •II. Реакции по гидроксильным группам
- •III. Специфические реакции
- •36)Гетерополисахариды: гиалуроновая кислота, хондроитинсульфаты. Строение, биологическая роль
- •24) Общее представление о липидах. Классификация липидов
- •1) Структурная
- •2) Запасная (энергетическая)
- •3) Защитная
- •4) Важный компонент пищевого сырья
- •2 Классификация липидов
- •2.12. Химическое равновесие. Обратимые и необратимые реакции
- •2.13. Константа химического равновесия. Прогнозирование смещения химического равновесия
- •56) Кооперативное связывание кислорода гемоглобином, эффект Бора, влияние 2,3-бфг на сродство гемоглобина к кислороду.
- •27)Соединения стероидной природы: холестерин, желчные кислоты. Строение и роль.
- •18) Альдегиды, особенности строения карбонильный группы. Химические свойства альдегидов: образование
- •10. Диффузия и осмос. Осмотическое давление. Закон Вант-Гоффа. Осмолярность биологических жидкостей. Осмотически-активные компоненты плазмы крови
- •19) Классификация карбоновых кислот: по основности, насыщенности, наличию функциональной группы, числу атомов углерода в цепи.
- •11. Биологическое значение осмотического давления. Поведение эритроцитов в растворах различной концентрации. Применение в медицине растворов различной осмолярности
- •39)Нуклеотиды: строение, номенклатура, характер связи. Гидролиз нуклеотидов.
- •12. Коллоидно-осмотическое давление крови. Гипотеза Старлинга как один из механизмов возникновения отеков
- •21) Вжк: классификация, номенклатура, структура и физические свойства. Заменимые и незаменимые вжк, витамин f, функции в организме.
- •13. Ионное произведение воды и водородный показатель. Методы определения pН растворов. Индикаторы и их свойства
- •22) Дикарбоновые кислоты: щавелевая, малоновая, янтарная, глутаровая, фумаровая. Их роль в организме.
- •16) Спирты и фенолы. Многотомные спирты.
- •25) Простые липиды: триацилглицеролы (таг): состав, номенклатура, свойства. Гидролиз таг. Биологическая роль.
- •16. Буферные системы: определение понятия, типии буферной системы. Буферная емкость и pН буферной системы
- •17. Механизм действия буферных систем.
- •18. Типы окислительно-восстановительных (редокс) реакций в организме
- •19. Строение комплексных соединений. Классификация и номенклатура
- •1. По знаку заряда комплекса:
- •2. По принадлежности комплексного соединения к определенному классу соединений:
- •3. По природе лиганда:
- •4. По внутренней структуре комплекса:
- •20. Понятие о хелатных соединениях. Хелатообразующие лиганды, примеры
- •3.5. Биологические функции углеводов
- •1. Клеточная локализация и функция
- •2. Строение миоглобина
- •3.Связывание гема с апомиоглобтом
- •41) Первичная структура нуклеиновых кислот. Нуклеотидный состав днк и рнк.
- •22. Сорбция. Понятия адсорбции и абсорбции. Физическая и химическая адсорбция. Зависимость величины адсорбции от различных факторов
- •42)Понятие о вторичной структуре днк. Комплементарность нуклеиновых оснований. Водородные связи в комплементарных парах нуклеиновых оснований.
- •11. Биологическое значение осмотического давления. Поведение эритроцитов в растворах различной концентрации. Применение в медицине растворов различной осмолярности
- •43)Аминокислоты номенклатура и классификация.
- •1. Моноаминомонокарбоновые.
- •10. Диффузия и осмос. Осмотическое давление. Закон Вант-Гоффа. Осмолярность биологических жидкостей. Осмотически-активные компоненты плазмы крови
- •45)Химические свойства аминокислот.Биологически важные свойства аминокислот.
- •I. Общие свойства
- •II. Свойства карбоксильной группы (кислотность)
- •III. Свойства аминогруппы (основность)
- •1. С сильными кислотами → соли:
- •IV. Качественная реакция
- •1. Все аминокислоты окисляются нингидрином с образованием продуктов сине-фиолетового цвета!
- •17. Механизм действия буферных систем. Буферные системы крови
- •48)Вторичная структура белка
- •37)Азотистые основания пуриновые (аденин, гуанин) и пиримидиновые (тимин, урацил, цитозин). Строение, лактим-лактамная таутомерия.
- •10. Диффузия и осмос. Осмотическое давление. Закон Вант-Гоффа. Осмолярность биологических жидкостей. Осмотически-активные компоненты плазмы крови
- •54)Классификация сложных белков
- •50) Классификация белков
- •11. Биологическое значение осмотического давления. Поведение эритроцитов в растворах различной концентрации. Применение в медицине растворов различной осмолярности
- •49)Третичная и четвертичная структуры белков. Олигомерные белки.
20. Понятие о хелатных соединениях. Хелатообразующие лиганды, примеры
Хелатные соединения - комплексные соединения, в которых лигандприсоединен к центральному атому металла посредством двух или большего числа связей. Характернаяособенность хелатных соединений - наличие циклических группировок атомов, включающих атом металла, как, напр., в гемоглобине, хлорофилле. Хелатные соединения используют в химической промышленности, напр. для разделения близких по свойствам металлов, в аналитической химии.
Органические хелатообразующие лиганды широко используются в аналитической практике как осадители ионов металлов. Растворимость хелатных комплексов этого типа зависит прежде всего от свойств лигандов, заряда, устойчивости и структуры образующегося комплекса. Предполагается, что в определении стереохимии значительная роль принадлежит лиганду, являющемуся партнером в образовании координационной связи. Координационное число иона металла по отношению к монодентатным лигандам определяется главным образомразмером лиганда и числом потенциальных донорных атомов. Детальная стереохимия для данного координационного числа в большинстве случаев зависит от требований иона металла (эффекты кристаллического поля) и в изменяющейся степени от стереохимии лиганда, хелатообразующих свойств и природы донорных атомов, принимающих участие в образовании связи. Группу атомов (молекулу или ион), которая может связываться с одним и тем же ионом металла несколькими из своих атомов, называют хелатообразующей или полидентатным лигандом. Известны хелатообразующие агенты, координирующиеся двумя, тремя, четырьмя, пятью, шестью и даже восемью донорными атомами чаще всего встречаются агенты с двумя донорными атомами. Такие полидентатные лиганды называют соответственно би-, три-, тетра-, пента- и гексадентатными.
Классификация полисахаридов.
Для характеристики полисахаридов важно знать, из каких остатков моносахаридов построена цепь, каким образом они связаны между собой и чем отличается их макроструктура.
Классификация полисахаридов
Существует несколько видов классификации:
- по типу моносахаридов, входящих в полисахарид;
По типу моносахаридов различают гомополисахариды и гетерополисахариды. Гомополисахариды построены из остатков моносахаридов одного типа (амилоза, амилопектин, гликоген, целлюлоза, пектин). Так, построенные из молекул глюкозы полимеры называют глюканами, иногда конкретизируя особенности строения цепи (тип гликозидной связи и номера гидроксильных групп, через которые образованы связи). Например, линейную амилозу называют α-D-(1-4)глюкан, а целлюлозу – β-D-(1-4)глюкан.
Гетерополисахариды содержат остатки двух или большего числа моносахаридов, для которых важна последовательность чередования в молекуле полимера (гиалуроновая кислота, альгиновая кислота, арабиноглюкогалактаны, хондроитинсульфаты, гепарин и др.).
3.5. Биологические функции углеводов
К наиболее важным функциям полисахаридов относятся: энергетическая, опорная, защитно-механическая, связующая и структурная.
Энергетическая функция. Ее выполняют резервные гомополисахариды - крахмал и гликоген. При необходимости гликоген быстро расщепляется с образованием легхоусвояемого источника энергии - глюкозы. Крахмал пищи также распадается до глюкозы под действием ферментов пищеварительного тракта. За счет окисления углеводов удовлетворяется половина потребностей человека в энергии.
Опорную функцию выполняет целлюлоза в растительных организмах и хондроитинсульфаты в костной ткани.
Защитно-механическая - типичная функция гетерополисахаридов. Высокая вязкость и слизеподобная консистенция объясняет их роль защищающего поверхность клеток. Выстилая трущиеся поверхности сосудов, мочеполовых путей, пищеварительного тракта, слизистой носа, трахеи, бронхов, суставов (синовиальная жидкость) и т.д., они предохраняют их от механического повреждения.
Связующая, или структурная, функция - кислые гетерополисахариды являются структурным межклеточным веществом, одновременно выполняющим функцию биологического цемента (например гиалуроновая кислота). Углеводы - обязательный компонент большинства внутриклеточных структур, а в растительных организмах - основа клеточных мембран.
Гидроосмотическая и ионрегулирующая функции. Кислые гетерополисахариды, благодаря высокой гидрофильности и отрицательному заряду, способны удерживать большие количества воды и катионов. Например, гиалуроновая кислота связывает воду и катионы, регулируя межклеточное осмотическое давление. Подобно осмометру, эта кислота препятствует излишнему скоплению свободной воды в межклеточном пространстве.
Кофакторная функция. Некоторые гетерополисахариды, такие как гепарин и гепарансульфат, действуют как кофакторы ферментов. Гепарин проявляет свойства тех ферментных белков, у которых он играет роль кофактора. Поэтому он осуществляет антисвертывающую функцию (задерживает свертывание крови) и антилипемическую (снижает уровень липидов в крови, активируя их расщепление). На практике гепарин и сульфатированные синтетические полисахариды (гепариноиды) широко применяют как антикоагулянты и противоатеросклеротические препараты.
Синтетическая функция. Углеводы используются для синтеза соединений других классов: нуклеиновых кислот, нуклеотидных коферментов, липидов, белковых аминокислот, гликопептидов и т.д.
Билет №21
Строение гемопротеидов на примере миоглобина.
Структура и функции миоглобина
Миоглобин относят к классу гемсодержащих белков, т.е. он содержит простетическую группу - гем, довольно прочно связанную с белковой частью. Миоглобин относят к глобулярным белкам; он имеет только одну полипептидную цепь.