Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
книги / 489.pdf
Скачиваний:
14
Добавлен:
07.06.2023
Размер:
3.44 Mб
Скачать

Technology Innovation to Accelerate Energy Transitions

Annex B

Demand for data centre and data transmission network services is expected to continue to grow strongly over the next decade. Innovation will be critical to ensuring that energy efficiency gains continue to keep overall energy demand in check.

Accelerating energy efficiency of mobile networks

Global internet protocol (IP) traffic is increasing rapidly, and is expected to triple by 2022. This traffic is increasingly shifting to wireless and mobile: wireless and mobile devices expected to account for more than 70% of traffic by 2022, up from around half in 2018.

This shift toward greater use of mobile networks may have significant implications for energy use, given the considerably higher electricity intensities (kWh/GB) of mobile networks compared with fixed-line networks at current traffic rates.

Applying artificial intelligence in data centres

Demand for data centre services is expected to continue to grow strongly after 2020, and data centre energy use will continue to be largely determined by the pace of energy efficiency gains. While the continued shift to efficient cloud and hyperscale data centres will reduce the energy intensity of data centre services, applying artificial intelligence (AI) and machine learning to tap further efficiency gains may become increasingly important.

Lighting

Although the shift to solid-state lighting (SSL) products is gaining momentum, LED technologies have not yet reached maturity. There are still innovation gaps that make it challenging to continue improving the efficacy of LEDs (to exceed 160 lm/W by 2030), develop the best regulation metrics (with respect to energy performance and light quality), and ensure that smart lamps and luminaires generate energy savings.

Defining and enhancing the quality of light for high-efficacy LED products

Closing the technical gaps for SSL sources and components can not only increase the efficacy of lighting products, but also ensure they provide high-quality light at prices that are competitive with the less-efficient, older technologies (such as fluorescent, halogen and incandescent lamps). Clear policy guidelines on quality and performance are therefore needed for SSL improvements.

Ensuring policy makers have the best metrics for regulation

Policy makers need robust and relevant metrics to set appropriate quality and performance requirements. With the transition to SSL, some of the lighting metrics have become outdated and are no longer the best for determining policy measures. For example, the ‘colour rendering index’ (CRI) metric was developed in the 1930s and uses an incandescent lamp spectral output as its reference source. This means that lamps mimicking incandescent light output will score 100 and other spectral outputs that have been judged more visually appealing score lower.

Ensuring energy savings through smart lamps and luminaires

Smart lamps and luminaires could significantly reduce electricity consumption for lighting by adjusting to daylight levels, room occupancy and interactions with building energy

PAGE | 53

IEA. All rights reserved.

Соседние файлы в папке книги