Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
книги / 489.pdf
Скачиваний:
14
Добавлен:
07.06.2023
Размер:
3.44 Mб
Скачать

Technology Innovation to Accelerate Energy Transitions

Annex B

Improving the cost and performance of lithium-ion batteries

For trucks operating on regional delivery and long-haul segments, the suitability of electrification will depend upon continuing energy density improvements and cost reductions in lithium-based batteries.

There is a broad consensus that the ‘floor’ costs of current lithium-ion technologies may be around 80 USD/kWh. Going beyond that threshold is necessary in the SDS after around 2030, and will require the development of technologies that are currently in very early stages of development.

In long-haul, heavy-duty applications, gravimetric energy density is an important performance criterion on which advanced lithium-ion batteries will have to continue to improve in order to compete with fossil (diesel and natural gas) powered trucks. Advanced solid state chemistries may be able to achieve energy densities of 300-400 Wh/kg, and even more advanced chemistries (such as Lithium-Air) may have the potential to reach densities as high as 1000 Wh/kg or more.

Deploying Electric Road System (ERS) corridors

With the exception of the long-range Tesla semi variant and the prototype Nikola trucks, the range of zero-emission trucks is limited to below 600 kilometres. Together with the time required to recharge depleted batteries (or the high amperage, voltage, and power draw requirements of very fast charging), this points to the need for alternative infrastructure and operational models for long-haul trucking. To date, three competitors seem most promising: dynamic charging on Electric Road System (ERS) corridors, continuing improvements in the performance, capacity, and costs of advanced lithium batteries, and hydrogen.

Cost-competitive hydrogen fuel cell systems for FCEVs

There are two main types of zero-emissions vehicles: BEVs and FCEVs. Because of the long charging time and short range of EVs, FCEVs hold promise as a complementary technology, but they remain costly and their availability is limited. Transport modes such as trucks, buses, maritime and locomotive applications, may particularly benefit from fuel cell rather than pure electric, battery-based drivetrains. Several steps can be taken to reach cost targets: reduce precious metal use by downsizing the fuel cell stack; boost production of fuel cells and all ancillary components to obtain economy-of-scale cost reductions; and deploy targeted refuelling infrastructure tailored to specific modes and applications.

Electric vehicles

Innovation in EVs fundamentally needs to focus on continued improvements of the battery technology itself, including advancing alternative chemistries, to reach the cost, density and efficiency needed to reach the levels of deployment in the SDS.

These innovation efforts can also support more sustainable manufacturing and value chains for the large volumes of batteries produced under the SDS.

As the share of EVs increases, their impact on electricity networks, particularly on distribution grids, will become larger. If EV charging is deployed and managed smartly however, EVs can

PAGE | 46

IEA. All rights reserved.

Соседние файлы в папке книги