Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
154
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать

9.2 Sound Pressure Levels

231

9.2Sound Pressure Levels

9.2.1Power-Like Quantities

All power-like physical quantities can be formulated as levels or using the decibel scale.

The denition and the units of sound power w are shown below:

 

energy

 

force

 

distance

 

ðPOWERÞ wh

 

i

¼ ðPRESSUREÞ p area

ðVELOCITYÞ v

time

 

time

 

 

 

ðAREAÞ S ½area&

 

 

 

The sound power w can be formulated in terms of pressure, velocity, and area:

hJ i

w ¼ PRMSVRMSS s

For plane waves moving at speed c, because VRMS ¼ PρRMS, we arrive at:

oc

w ¼

P2

 

J

½Plane Waves&

ρoc

S h s i

 

RMS

 

 

 

The following are some power-like physical quantities that can be formulated as levels:

Sound power level (SWL):

Lw

½dB& ¼ 10 log 10

Wr

 

 

 

 

 

 

 

 

 

W

 

Sound pressure level (SPL):

 

 

 

 

 

 

 

 

 

 

 

 

 

¼

 

 

P2

 

 

 

 

 

Pr2

 

 

Lp

 

10 log 10

 

RMS

 

RMS Velocity Square:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

½

 

& ¼

 

 

V2

 

 

 

 

 

Vr2

LV

 

dB

 

 

10 log 10

 

 

RMS

 

 

 

 

 

 

 

 

 

 

Peak-to-peak velocity square:

232

9 Sound Pressure Levels and Octave Bands

 

LV ½dB& ¼ 10 log 10

Vr2

 

 

 

 

V2

 

Peak-to-peak acceleration square:

LA ½dB& ¼ 10 log 10

 

A2

 

Ar2

Peak-to-peak displacement square:

Xr2

 

LX ½dB& ¼ 10 log 10

 

 

X2

 

Remarks

Sound pressure level is a power-like quantity because W ¼ Re ðPÞ Re ðUÞS ¼

Re ðPÞ Re PZ , where Z is the acoustic impedance that relates pressure P and velocity U.

Only (1) sound pressure level and (2) sound power level have well-established reference values, but there is no established international reference for other power-like physical quantities. For levels other than the sound pressure level and power level, their reference values must be provided for calculating their associated power-like quantities.

The denition of levels and the decibel scale requires a reference value. When a power-like physical quantity is presented as a level and decibel scale, this powerlike quantity is compared to the reference value. Therefore, the benet of using a level and decibel scale is to make comparing different physical quantities easier. For example, RMS pressure has an international reference value of 20 [μPa], and this reference value allows comparing RMS pressure using dB instead of μPa.

9.2.2Sound Power Levels and Decibel Scale

A sound power level describes the acoustic power radiated by a source with respect to the international reference wr ¼ 10 12[W ¼ Watt]:

Lw ¼ 10 log

w

¼ 10 log ðwÞ þ 120

10 12

9.2 Sound Pressure Levels

233

9.2.3Sound Pressure Levels and Decibel Scale

Sound pressure is not a power-like quantity, but its squared value is proportional to sound power: w / p2. The sound pressure level in decibels (SPL in dB) is thus:

¼

Pr2

 

¼

 

Pr

 

2

 

Pr

 

 

¼

 

Lp 10 log 10

 

PRMS2

 

 

10 log 10

 

PRMS

 

 

20 log

PRMS

 

 

 

 

 

 

 

 

 

10

 

where Pr is the international reference sound pressure based on an auditory threshold of human hearing at 1000 Hz:

Pr ¼ 20 10 6 ½Pa& ¼ 20 ½μPa& ðRMS referenceÞ

In addition, the subscript RMS of the pressure PRMS is often omitted for simplicity.

Remarks

The number 20 before the log is the result of 10 2 where 2 is related to the power

of

PRMS .

 

Pr

Sound pressure level 0 [dB] means that the sound pressure is equal to the reference pressure:

 

 

 

 

 

 

20 10 6

 

Pa

 

 

Lp ¼ 20 log 10

 

 

Pr

½

 

&

 

 

 

20

10 6

Pa

 

 

 

 

 

¼ 20 log

10

 

20

10 6

½Pa&

 

¼ 20 0 ¼ 0 ½dB&

 

 

 

 

 

 

½ &

 

 

 

 

 

 

9.2.4Sound Pressure Levels Calculated in Time Domain

 

 

Cannot Apply Weighting

 

 

 

 

 

Time Domain

 

RMS Pressure W/O Weighing

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 9.4: Sound Pressure Level Calculated in Time Domain

Given:

The single-frequency pressure time domain function p(t):

pðx, tÞ ¼ P1 cos ð2π f 1tÞ

234

9 Sound Pressure Levels and Octave Bands

where:

P1 ¼ 3 ½Pa&

f 1 ¼ 500 ½Hz&

Calculate:

(a)The RMS pressure in the time domain

(b)The unweighted sound pressure level

Example 9.4: Solution

(a) The RMS pressure calculated in the time domain is:

1

T

 

1

T

 

P2

 

32

 

pRMS2 =

 

Z0

p2

ðtÞdt =

 

Z0

P12 cos 2ð2π f 1tÞdt =

1

¼

 

hðPaÞ2i

T

T

2

2

or:

P1

3

½Pa&

pRMS = p2

¼ p2

(b) The unweighted sound pressure level is:

¼

Pr

¼

Pr

¼

0 20 10

 

 

1 ½ &

 

 

P2

 

 

P2

 

 

 

32

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

Lp

 

RMS

 

 

RMS

 

10 log 10

 

6

2

 

dB

10 log 10 2

 

10 log 10 2

 

 

 

 

 

 

 

 

 

@

 

 

 

 

 

A

 

or equivalently: