Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
152
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать

192 7 Resonant Cavities

1

pRMS ¼ p jAj

2

Solve for Plmn using the given RMS pressure ( pRMS ¼ 1 [Pa]) and the location

(x ¼ 2 [m], y ¼ 1 [m], and z ¼ 0 [m]) as shown below:

5

1 ½Pa& ¼ p2 jAj

¼ p2 Plmn cos

5 cos

5

¼ p2 Plmn cos 2

 

 

1

 

 

1

 

π

π

 

1

π

 

 

 

2

 

 

 

 

 

 

 

 

Plmn

¼

p

5

 

½ &

 

 

 

 

 

 

cos

 

 

 

 

 

 

 

 

 

 

 

Pa

 

 

 

 

 

 

 

 

2 π

 

 

 

 

 

 

 

7.5Homework Exercises

Exercise 7.1 (OPEN-CLOSED PIPE)

A pipe with OPEN-CLOSED boundary conditions has a nite length L as shown below. Set the left end of the pipe as x ¼ 0:

 

 

 

 

 

 

 

 

= 0

 

 

=

(a)Show that the formulas for the wavenumber and natural frequency of the eigenmode l are:

π

kl ¼ 2L ð2l 1Þ

c

f l ¼ 4L ð2l 1Þ

(b) If L ¼ 0.5 [m],determine the rst three natural frequencies, and plot their corresponding mode shapes. Use 340 [m/s] for the speed of sound.

7.5 Homework Exercises

193

Use 340 [m/s] for the speed of sound (c) in air. Show units in the Meter- Kilogram-Second (MKS) system.

(Answers) (b) 170 [Hz], 510 [Hz], 850 [Hz]

Exercise 7.2 (CLOSE-OPEN PIPE)

A pipe with OPEN-CLOSED boundary conditions has a nite length L as shown below. Set the left end of the pipe as x ¼ 0:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 0

=

(a)Show that the formulas for the wavenumber and natural frequency of the eigenmode l are:

kl ¼ 2πL ð2l 1Þ, f l ¼ 4cL ð2l 1Þ

(b)If L ¼ 0.5 [m],determine the rst three natural frequencies, and plot their corresponding mode shapes. Use 340 [m/s] for the speed of sound.

Use 340 [m/s] for the speed of sound (c) in air. Show units in the Meter- Kilogram-Second (MKS) system.

(Answers) (b) 170 [Hz], 510 [Hz], 850 [Hz]

Exercise 7.3 (3D Rectangular Cavity)

The dimensions of a rectangular cavity are (Lx, Ly, Lz) ¼ (2, 5, 10)[m].

(a)Calculate all resonant frequencies of this cavity that are lower than 60 Hz.

(b)Plot the mode shape of the eigenmode (l, m, n) ¼ (0, 3, 5) using the pressure nodal lines, and indicate the peaks and valleys with +and - signs, respectively.

(c)Plot the mode shape of the eigenmode (l, m, n) ¼ (0, 5, 8) using the pressure nodal lines, and indicate the peaks and valleys with +and - signs, respectively.

194

7 Resonant Cavities

Use 340 [m/s] for the speed of sound (c) in air. Show units in the Meter- Kilogram-Second (MKS) system.

(Answers): (a) 17 [Hz], 34 [Hz], 38.01 [Hz], 48.08 [Hz], 51 [Hz]

Exercise 7.4 (3D Rectangular Cavity)

The dimensions of a rectangular cavity are (Lx, Ly, Lz) ¼ (3, 4, 10)[m].

(a)Calculate all resonant frequencies of this cavity that are lower than 50 [Hz].

(b)Plot the mode shape of the eigenmode (l, m, n) ¼ (0, 2, 3) using the pressure nodal lines, and indicate the peaks and valleys with +and - signs, respectively.

(c)Plot the mode shape of the eigenmode (l, m, n) ¼ (0, 5, 8) using the pressure nodal lines, and indicate the peaks and valleys with +and - signs, respectively.

Use 340 [m/s] for the speed of sound (c) in air. Show units in the Meter- Kilogram-Second (MKS) system.

(Answers): (a) 17 [Hz], 34 [Hz], 42.5 [Hz], 45.8 [Hz]

Exercise 7.5 (3D Rectangular Cavity)

The dimensions of a rectangular cavity are (Lx, Ly, Lz) ¼ (4, 6, 10)[m]. Use 340 [m/s] for the speed of sound.

(a)Calculate the three lowest resonant frequencies of this cavity. Indicate the eigenmode. State the mode numbers.

(b)Plot the mode shape of the eigenmode (l, m, n) ¼ (0, 3, 5) using the pressure nodal lines, and indicate the peaks and valleys with +and - signs, respectively.

(Answer): (a) f001 ¼ 17 [Hz]; f010 ¼ 28.33 [Hz]; f011 ¼ 33.04 [Hz]

Exercise 7.6 (Standing Waves, Complex) (Optional)

!

Derive the 2D velocity vector usðx, y, tÞ of the plane standing wave from the 2D acoustic pressure using Eulers force equation. Use complex number format in the derivation:

pðx, y, tÞ ¼

1

AtAxAy e jðωtþθt Þ þ e jðωtþθt Þ

8

e jðkxxþθxÞ þ e jðkxxþθxÞ e jðkyyþθyÞ þ e jðkyyþθyÞ

 

b

e jðωtþθt Þ e jðωtþθt Þ

 

!uSðx, y, tÞ ¼

nxex

8ρ0c AtAxAy

7.5 Homework Exercises

195

e jðkxxþθxÞ e jðkxxþθxÞ e jðkyyþθyÞ þ e jðkyyþθ

nybey AtAxAy e jðωtþθt Þ e jðωtþθt Þ

8ρ0c

e jðkxxþθxÞ þ e jðkxxþθxÞ e jðkyyþθyÞ e jðkyyþθ

Use Eulers force equation:

 

pðx, y, tÞ ¼ ρo

!

 

 

 

 

 

 

uSðx, y, tÞ

t

!uSðx, y, tÞ ¼ ρo

Z x pðx, y, tÞ dt

ρo

Z y pðx,

 

ex

 

ey

 

 

b

 

 

 

 

 

b

 

 

 

yÞ

yÞ

y, tÞ dt

Chapter 8

Acoustic Waveguides

In the previous chapter, resonance in rectangular cavities was formulated as standing waves as a result of the addition of a forward traveling wave (pre-reection) and a backward traveling wave (post-reection). In this chapter, we will study the propagation of plane waves in acoustic waveguides, as shown on the right-hand side of the gure below. In acoustic waveguides, traveling waves propagate along waveguides and have no returning waves; standing waves exist in lateral directions.

We can treat acoustic waveguides as resonant cavities with the two ends removed (see the gure below). Because there is no reecting wave on the two ends, the wave in the waveguide will propagate without returning waves (as shown on the righthand side of the gure below):

Resonant Cavity

Acoustic Waveguide

 

 

 

 

 

 

 

 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

197

H. Lin et al., Lecture Notes on Acoustics and Noise Control, https://doi.org/10.1007/978-3-030-88213-6_8

198

8 Acoustic Waveguides

The propagation of plane waves in acoustic waveguides is in the form of resonance (standing waves in the transverse direction) and propagation (traveling waves in the axial direction). Based on what we learned from the previous chapters, we can treat a standing wave (shown in the upper left of the gure below) as the addition of two traveling waves with the same amplitudes and traveling in opposite directions. By adding these two traveling waves (in the transverse direction) back to the traveling wave (in the axial direction), we can reconstruct the propagating wave in the acoustic waveguide as shown in the upper right of the gure below:

 

 

Standing Wave

Traveling

 

Traveling

Waves Propagate in

 

 

(In Transverse Dir.)

 

Acoustic Waveguide

 

 

 

Wave

 

 

 

Wave

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1+2

 

1+3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Traveling Wave

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(In Axial Dir.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After the two walls in the z-direction are removed, the four wavenumber vectors (in 2D resonant cavities as shown in the previous chapter) become two wavenumber vectors because there is no reection in the z-direction as shown in the gure above. Without the two walls in the z-direction, the wavenumbers in the y-direction are still discretized (as in 2D resonant cavities), but the wavenumbers in the z-direction become continuous numbers as:

kym ¼

π

 

is DISCRETIZED where m is an INTEGER

 

m

kym

Ly

kzn ¼

π

n

¼ kz

kz

is CONTINOUS since Lz can be ANY LENGTH

 

Lz

In a waveguide, because Lz can be considered as a very large number, and based on the formula above, kzn is continuous. The formulas shown above are the most important formulas of this chapter and will be derived in detail in this chapter.