Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
акустика / lin_h_bengisu_t_mourelatos_zp_lecture_notes_on_acoustics_and.pdf
Скачиваний:
152
Добавлен:
04.05.2023
Размер:
12.68 Mб
Скачать

118

 

 

 

 

 

 

 

 

5 Solutions of Spherical Wave Equation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General forms

Cartesian coordinates

 

Spherical coordinates

 

 

 

 

 

 

u

 

u ¼

1

 

p ðx, tÞ

 

rr, tÞ ¼

 

 

A

 

 

cos ðωt kr þ θ ϕÞ

 

ρo c

 

ρo c cos ϕ

pRMS

 

 

2

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

p2 RMS

A2

 

 

r2pRMS2 A2

 

 

 

 

 

 

 

 

 

 

 

 

 

I ¼ pu

I ¼

1

 

 

2

 

 

 

1

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

p RMS

 

IðrÞ ¼

 

 

pRMS

 

 

 

 

 

 

 

 

 

ρo c

 

ρo c

 

 

 

 

 

 

 

 

 

z

 

p

z

 

ρoc

 

 

 

 

 

 

 

 

 

 

 

cos ðωt krþθÞ

 

 

¼ u

¼

 

z

¼

ρoc cos

ð

ϕ

Þ

 

 

 

 

 

 

 

 

 

 

 

 

ð

ωt

 

kr

þ

Þ

 

 

 

 

 

 

 

 

 

 

 

 

 

cos

 

 

θ

ϕ

 

 

z

 

 

See table in Chap. 4

 

z ¼ ρoc cos (ϕ)e jϕ

 

 

 

 

 

 

 

 

w

 

w R sI(r) ds

 

 

 

IðaÞ ¼

ρo c

2

 

 

w RsIðrÞ ds ¼ 4πa

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2πA

 

5.1Spherical Coordinate System

Spherical coordinates consist of three coordinates: r, θ, and φ. These denote the direct distance to a point in space, the lateral angle, and the vertical angle to get there. These three coordinates describe a point in 3D space, just as do three Cartesian coordinates x, y, and z.

The geometry of the spherical coordinates is dened below:

̂

Denition of the coordinates in spherical coordinates

When a vector is expressed in vector format, this expression is independent of the choice of the coordinate systems. A vector can be formulated in the Cartesian coordinates and the spherical coordinates as follows:

!

 

br

 

bθ

 

b

φ

ðCartesian coordÞ

v ¼ xex þ yey

þ zez

 

!v

¼

b

þ

b

þ

b

ð

Spherical coord

Þ

 

re

 

θe

 

ϕe

 

 

 

Gradient operator is also independent of the choice of coordinate systems. The gradient operator can also be formulated in the Cartesian coordinates and the spherical coordinates as follows:

¼

ðCartesian coordÞ

 

bex þ

 

bey þ

 

bez

x

y

z

5.2 Wave Equation in Spherical Coordinate System

119

¼

 

1

1

ðSpherical coordÞ

 

ber þ

 

 

 

beθ þ

 

∂φbeφ

r

r

∂θ

r2 sin ðθÞ

When the acoustic eld is independent of θ and φ, the gradient operator

simplies to:

 

 

 

 

 

¼

ðCartesian coord, 1DÞ

 

 

bex

x

¼

 

ðSpherical coord, 1DÞ

 

 

ber

r

The Laplacian operator 2 can be formulated in both coordinate systems as:

 

 

 

 

2

 

 

 

2

2

 

 

 

 

2

 

 

 

 

ðCartesian coordÞ

 

 

 

 

¼

 

 

þ

 

þ

 

 

 

 

 

 

 

 

 

 

 

 

x2

y2

 

z2

 

 

 

 

 

 

2

 

 

2

1

 

 

 

 

 

1

 

 

 

2

2 ¼

 

 

þ

 

 

 

þ

 

 

 

 

 

sin ðθÞ

 

 

þ

 

 

 

 

 

ðSpherical coordÞ

r

2

r

r

r2 sin

θ

Þ

∂θ

∂θ

r2 sin

θ

Þ

∂φ2

 

 

 

 

 

 

 

 

 

 

 

ð

 

 

 

 

 

 

 

 

 

 

 

ð

 

 

 

When the acoustic eld is independent of θ and φ, the Laplacian operator simplies to:

 

2

¼

2

 

 

 

 

ðCartesian coord, 1DÞ

 

x2

 

 

 

 

 

2

 

2

2

ðSpherical coord, 1DÞ

 

¼

 

þ

 

 

 

 

r2

r

r

5.2Wave Equation in Spherical Coordinate System

The acoustic wave equation can be formulated in the vector format as:

2

 

1 2

 

 

p ¼

 

 

 

p

ðVector FormatÞ

c2

t2

where the Laplacian operator for Cartesian coordinate and spherical coordinate is shown in the previous section. Because the vector format is independent of the choice of coordinate system, the Laplacian operator, 2, in the equation above can be formulated in both the spherical and Cartesian coordinate systems as shown in the previous section. The one-dimensional wave equation in the spherical coordinate

120

5 Solutions of Spherical Wave Equation

system can be obtained by replacing the Laplacian operator in vector format in the wave equations as:

 

2

2

pðr, tÞ ¼

1 2

 

 

þ

 

 

 

 

 

 

pðr, tÞ

ðSpherical coordÞ

r2

r

r

c2

t2

The one-dimensional acoustic wave equation in the spherical coordinate system is a function of r and t. The wave equation above can be transferred to the form of the wave equation in the Cartesian coordinate system by dening a new function ϕ(r, t):

ψðr, tÞ rpðr, tÞ

By replacing p(r, t) in the above wave equation with ψ(r, t)/r, the wave equation becomes:

2

1

 

2

 

 

ψðr, tÞ ¼

 

 

 

ψðr, tÞ

ðSpherical coordÞ

r2

c2

t2

By comparing the wave equations in the spherical coordinate above to the wave equation in the Cartesian coordinate as shown below:

2

1

 

2

 

 

pðx, tÞ ¼

 

 

 

pðx, tÞ

ðCartesian coordÞ

x2

c2

t2

We can see that the wave equation in the spherical coordinate is the same as the wave equation in the Cartesian coordinate. Therefore, the solutions, p(x, t), of the wave equation in the Cartesian coordinate, derived in Chap. 2, can be used as the solutions, ψ(r, t), of the wave equation in the spherical coordinate.

Example 5.1

Show that the following two equations are the same:

 

 

2

1

 

2

 

 

 

 

 

½rpðr, tÞ& ¼

 

 

 

½rpðr, tÞ&

 

 

r2

c2

t2

r2

þ r

 

r pðr, tÞ ¼ c2

t2 pðr, tÞ

 

2

2

 

1

 

2

Example 5.1 Solution

The Left-Hand Side

The left-hand side of the rst equation becomes:

5.3 Pressure Solutions of Wave Equation in Spherical Coordinate System

121

 

2

 

 

 

½rpðr, tÞ& ¼

 

r ½rpðr, tÞ&

 

 

r2

r

 

 

¼ r pðr, tÞ þ r r pðr, tÞ

 

 

 

 

 

 

∂ ∂2

¼r pðr, tÞ þ r pðr, tÞ þ r r2 pðr, tÞ

2

¼2 r pðr, tÞ þ r r2 pðr, tÞ

The Right-Hand Side

Since r and t are independent variables, the right-hand side of the equation becomes:

1 2 ½rpðr, tÞ& ¼ r 1 2 pðr, tÞ c2 t2 c2 t2

The Combined Equation

Since the left-hand side equals the right-hand side, the original wave equation p(- r, t) can be cast as:

 

Left Hand Side ¼ Right Hand Side

 

 

 

 

 

2

 

 

1

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

½rpðr, tÞ& ¼

 

 

 

½rpðr, tÞ&

 

 

 

 

 

r2

c2

t2

! 2

 

 

 

 

 

2

 

 

 

 

 

1 2

 

 

 

pðr, tÞ þ r

 

 

 

pðr, tÞ ¼ r

 

 

 

 

 

 

pðr, tÞ

r

r2

c2

t2

 

 

 

2

 

 

 

2

 

 

 

 

 

1 2

!

 

 

 

 

pðr, tÞ þ

 

 

 

pðr, tÞ ¼

 

 

 

t2 pðr, tÞ

 

 

r2

r

r

c2

!

 

 

2

þ r

 

r pðr, tÞ ¼ c2

 

 

 

 

 

2 pðr, tÞ

 

 

2

2

 

1

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

This proves that the equation is valid.

5.3Pressure Solutions of Wave Equation in Spherical Coordinate System

Solutions of the one-dimensional wave equation in the spherical coordinate system can be formulated as a real trigonometric function, as shown below:

122

 

 

5 Solutions of Spherical Wave Equation

rpðr, tÞ ¼ A cos ðωt kr þ θÞ

ðREPÞ

ð5:3Þ

or:

 

 

 

 

pðr, tÞ ¼

A

cos ðωt kr þ θÞ

ðREPÞ

ð5:3Þ

 

r

Unlike plane waves, it is hard and unusual to create a symmetrical spherical backward or inward traveling wave. Therefore, only the forward or outward spherical waves are discussed in this course.

The following proves the outward traveling wave solution above. The wave equation in a spherically symmetric pressure eld is described as:

2p þ 2 p ¼ 1 2p

r2 r r c2 t2

The spherical wave equation above can be modied and arranged into the same form as the wave equation for a plane wave. For this purpose, we will dene a new function φ:

ψðr, tÞ rpðr, tÞ

Note that ψ could be either a real or a complex number, depending on the equation in which it is used. For example, if ψ is used in a complex equation, it is a complex number. Similarly, if it is used in a real equation, it is a real number.

Substituting the function ψ(r, t) into the following equation will yield the spherical wave equation. The algebra is straightforward and is not shown here, but will be assigned as an exercise:

2 ψðr, tÞ ¼ 1 2 ψðr, tÞ

r2 c2 t2

Since the above equation has the same form as the one-dimensional plane wave equation, it has the same solutions as shown below:

ψðr, tÞ ¼ ½A c cos ðωt þ krÞ A s sin ðωt þ krÞ&

þ½Aþc cos ðωt krÞ Aþs sin ðωt krÞ& ðRIPÞ

¼ Aþ cos ðωt kr þ θþÞ þ A cos ðωt þ kr þ θ Þ ðREPÞ

where A , A+, A c, A+c, A s, A+s, θ , and θ+ are real constants related by the following geometry relationships:

5.3 Pressure Solutions of Wave Equation in Spherical Coordinate System

123

 

 

 

 

 

 

 

 

Geometric Relationship

 

 

 

 

 

 

 

 

 

 

 

 

 

Geom 1

± =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geom 2

± = tan

 

 

 

±

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geom 3

± cos

±

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geom 4

± = ± sin

±

 

±

 

 

Since only forward traveling wave is considered in the spherical coordinates, the above equation can be simplied by dening the following new variables:

Ac Aþc

As Aþs

A Aþ

θ θþ

Therefore, the outward traveling wave in spherical coordinates becomes:

ψðr, tÞ ¼ Ac cos ðωt krÞ As sin ðωt krÞ

ðRIPÞ

¼ A cos ðωt kr þ θÞ

ðREPÞ

where A, Ac, As, and θ are real variables related by the following geometric relationships:

Geometric Relationship

Geom 1

Geom 2

 

Geom 3

 

Geom 4

= sin

Transforming the new variable ψ(r, t) back to its original form of pressure p(r, t) yields: