
- •Preface
- •Objectives of the Book
- •Style
- •Prerequisites
- •The Big Picture
- •Contents
- •1.1 Review of Complex Numbers
- •1.2 Complex Numbers in Polar Form
- •1.3 Four Equivalent Forms to Represent Harmonic Waves
- •1.4 Mathematical Identity
- •1.5 Derivation of Four Equivalent Forms
- •1.5.1 Obtain Form 2 from Form 1
- •1.5.2 Obtain Form 3 from Form 2
- •1.5.3 Obtain Form 4 from Form 3
- •1.6 Visualization and Numerical Validation of Form 1 and Form 2
- •1.8 Homework Exercises
- •1.9 References of Trigonometric Identities
- •1.9.1 Trigonometric Identities of a Single Angle
- •1.9.2 Trigonometric Identities of Two Angles
- •1.10 A MATLAB Code for Visualization of Form 1 and Form 2
- •2.2 Equation of Continuity
- •2.3 Equation of State
- •2.3.1 Energy Increase due to Work Done
- •2.3.2 Pressure due to Colliding of Gases
- •2.3.3 Derivation of Equation of State
- •2.4 Derivation of Acoustic Wave Equation
- •2.5 Formulas for the Speed of Sound
- •2.5.1 Formula Using Pressure
- •2.5.2 Formula Using Bulk Modulus
- •2.5.3 Formula Using Temperature
- •2.5.4 Formula Using Colliding Speed
- •2.6 Homework Exercises
- •3.1 Review of Partial Differential Equations
- •3.1.1 Complex Solutions of a Partial Differential Equation
- •3.1.2 Trigonometric Solutions of a Partial Differential Equation
- •3.2 Four Basic Complex Solutions
- •3.3 Four Basic Traveling Waves
- •3.4 Four Basic Standing Waves
- •3.5 Conversion Between Traveling and Standing Waves
- •3.6 Wavenumber, Angular Frequency, and Wave Speed
- •3.7 Visualization of Acoustic Waves
- •3.7.1 Plotting Traveling Wave
- •3.7.2 Plotting Standing Wave
- •3.8 Homework Exercises
- •4.2 RMS Pressure
- •4.2.1 RMS Pressure of BTW
- •4.2.2 RMS Pressure of BSW
- •4.3 Acoustic Intensity
- •4.3.1 Acoustic Intensity of BTW
- •4.3.2 Acoustic Intensity of BSW
- •4.5.1 Issues with Real Impedance
- •4.6 Computer Program
- •4.7 Homework Exercises
- •4.8 References
- •4.8.1 Derivatives of Trigonometric and Complex Exponential Functions
- •4.8.2 Trigonometric Integrals
- •5.1 Spherical Coordinate System
- •5.2 Wave Equation in Spherical Coordinate System
- •5.3 Pressure Solutions of Wave Equation in Spherical Coordinate System
- •5.4 Flow Velocity
- •5.4.1 Flow Velocity in Real Format
- •5.4.2 Flow Velocity in Complex Format
- •5.5 RMS Pressure and Acoustic Intensity
- •5.7 Homework Exercises
- •6.1 Review of Pressure and Velocity Formulas for Spherical Waves
- •6.2 Acoustic Waves from a Pulsating Sphere
- •6.3 Acoustic Waves from a Small Pulsating Sphere
- •6.4 Acoustic Waves from a Point Source
- •6.4.1 Point Sources Formulated with Source Strength
- •6.4.2 Flow Rate as Source Strength
- •6.5 Acoustic Intensity and Sound Power
- •6.6 Computer Program
- •6.7 Project
- •6.8 Objective
- •6.9 Homework Exercises
- •7.1 1D Standing Waves Between Two Walls
- •7.2 Natural Frequencies and Mode Shapes in a Pipe
- •7.3 2D Boundary Conditions Between Four Walls
- •7.3.1 2D Standing Wave Solutions of the Wave Equation
- •7.3.2 2D Nature Frequencies Between Four Walls
- •7.3.3 2D Mode Shapes Between Four Walls
- •7.4 3D Boundary Conditions of Rectangular Cavities
- •7.4.1 3D Standing Wave Solutions of the Wave Equation
- •7.4.2 3D Natural Frequencies and Mode Shapes
- •7.5 Homework Exercises
- •8.1 2D Traveling Wave Solutions
- •8.1.2 Wavenumber Vectors in 2D Traveling Wave Solutions
- •8.2 Wavenumber Vectors in Resonant Cavities
- •8.3 Traveling Waves in Resonant Cavities
- •8.4 Wavenumber Vectors in Acoustic Waveguides
- •8.5 Traveling Waves in Acoustic Waveguides
- •8.6 Homework Exercises
- •9.1 Decibel Scale
- •9.1.1 Review of Logarithm Rules
- •9.1.2 Levels and Decibel Scale
- •9.1.3 Decibel Arithmetic
- •9.2 Sound Pressure Levels
- •9.2.2 Sound Power Levels and Decibel Scale
- •9.2.3 Sound Pressure Levels and Decibel Scale
- •9.2.4 Sound Pressure Levels Calculated in Time Domain
- •9.2.5 Sound Pressure Level Calculated in Frequency Domain
- •9.3 Octave Bands
- •9.3.1 Center Frequencies and Upper and Lower Bounds of Octave Bands
- •9.3.2 Lower and Upper Bounds of Octave Band and 1/3 Octave Band
- •9.3.3 Preferred Speech Interference Level (PSIL)
- •9.4 Weighted Sound Pressure Level
- •9.4.1 Logarithm of Weighting
- •9.5 Homework Exercises
- •10.1 Sound Power, Acoustic Intensity, and Energy Density
- •10.2.2 Room Constant
- •10.2.3 Reverberation Time
- •10.3 Room Acoustics
- •10.3.1 Energy Density due to an Acoustic Source
- •10.3.2 Sound Pressure Level due to an Acoustic Source
- •10.4 Transmission Loss due to Acoustical Partitions
- •10.4.2 Transmission Loss (TL)
- •10.5 Noise Reduction due to Acoustical Partitions
- •10.5.1 Energy Density due to a Partition Wall
- •10.5.2 Sound Pressure Level due to a Partition Wall
- •10.5.3 Noise Reduction (NR)
- •10.6 Homework Exercises
- •11.1 Complex Amplitude of Pressure and Acoustic Impedance
- •11.1.3 Transfer Pressure
- •11.2 Complex Acoustic Impedance
- •11.3 Balancing Pressure and Conservation of Mass
- •11.4 Transformation of Pressures
- •11.5 Transformation of Acoustic Impedance
- •11.7 Numerical Method for Molding of Pipelines
- •11.8 Computer Program
- •11.9 Project
- •11.10 Homework Exercises
- •12.1.1 Equivalent Acoustic Impedance of a One-to-Two Pipe
- •12.2 Power Transmission of a One-to-Two Pipe
- •12.3 Low-Pass Filters
- •12.4 High-Pass Filters
- •12.5 Band-Stop Resonator
- •12.6 Numerical Method for Modeling of Pipelines with Side Branches
- •12.7 Project
- •12.8 Homework Exercises
- •Nomenclature
- •Appendices
- •Appendix 1: Discrete Fourier Transform
- •Discrete Fourier Transform
- •Fourier Series for Periodical Time Function
- •Formulas of Discrete Fourier Series
- •Appendix 2: Power Spectral Density
- •Power Spectral Density
- •Accumulated Sound Pressure Square
- •Sound Pressure Level in Each Band
- •References
- •Index

114 |
4 Acoustic Intensity and Specific Acoustic Impedance |
||||
|
p ðx, tÞ ¼ A sin ðωt þ kxÞ ¼ |
1 |
jAe jðωtþkxÞ þ jAe jðωtþkxÞ |
||
|
|
||||
|
2 |
||||
|
pþðx, tÞ ¼ A sin ðωt kxÞ ¼ |
1 |
jAe jðωt kxÞ jAe jðωt kxÞ |
||
|
|
|
|||
|
|
2 |
|||
|
p ðx, tÞ ¼ A sin ðωt þ kxÞ ¼ |
1 |
jAe jðωtþkxÞ þ jAe jðωtþkxÞ |
||
|
|
||||
|
2 |
a)Calculate the standing wave (real number) produced by the forward and backward traveling waves.
b)What are the wave amplitude and the wavelength of the standing wave?
c)Sketch the resulting wave pattern and indicate the location of peaks and valleys in terms of wavelength.
d)Calculate the root-mean-square (RMS) pressure at x ¼ πk.
e)Calculate the acoustic intensity of the standing wave at any point in space.
f)Calculate the specific acoustic impedance of the standing wave at any point in space.
(Answers):
π p
i. (a) 2A cos (ωt) cos (kx); (b) 2A, 2 ; (c) N/A; (d) 2jAj; (e) 0;
k
(f) z |
¼ |
ρ |
o |
c cos ðωtÞ |
cos ðkxÞ |
; z |
¼ |
jρ |
o |
c cot kx ; z |
¼ |
jρ |
o |
c cot |
ð |
kx |
Þ |
|
||||||||||||||||||||||||||
|
|
|
|
sin ðωtÞ |
sin ðkxÞ |
|
|
|
|
|
|
|
ð |
|
Þ |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
ii. (a) 2A sin (ωt) sin (kx); (b) 2A, |
2π |
; (c) N/A; (d) 0; (e) 0; |
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||
|
k |
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
sin ðωtÞ |
sin ðkxÞ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
(f) z ¼ ρoc cos ðωtÞ |
cos ðkxÞ |
; z ¼ jρoc tan ðkxÞ; z |
¼ jρoc tan ðkxÞ |
|
||||||||||||||||||||||||||||||||||||||||
iii. (a) 2A sin (ωt) cos (kx); (b) 2A, |
2π |
; (c) N/A; (d) p2jAj; (e) 0; |
|
|
||||||||||||||||||||||||||||||||||||||||
k |
|
|
||||||||||||||||||||||||||||||||||||||||||
(f) z |
¼ |
ρ |
o |
c |
sin ðωtÞ |
cos ðkxÞ |
; z |
¼ |
jρ |
o |
c cot |
ð |
kx |
Þ |
; z |
¼ |
jρ |
o |
c cot |
ð |
kx |
Þ |
||||||||||||||||||||||
|
|
|
|
cos ðωtÞ |
sin ðkxÞ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
iv. (a) 2A cos (ωt) sin (kx); (b) 2A, |
|
2π |
; (c) N/A; (d) 0; (e) 0; |
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
k |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(f) z |
¼ |
ρ |
o |
c |
cos ðωtÞ |
sin ðkxÞ |
; z |
¼ |
jρ |
o |
c tan |
ð |
kx |
Þ |
; z |
¼ |
jρ |
o |
c tan |
ð |
kx |
Þ |
||||||||||||||||||||||
|
|
|
|
sin ðωtÞ |
cos ðkxÞ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4.8References
4.8.1Derivatives of Trigonometric and Complex Exponential Functions
Derivatives of trigonometric functions and complex exponential functions:

4.8 References |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
|
d |
½ |
cos |
½ |
f |
ð |
x |
Þ&& ¼ |
sin |
½ |
f |
ð |
x |
Þ& |
df ðxÞ |
¼ |
sin |
½ |
f |
ð |
x |
Þ& |
f 0 |
ð |
x |
Þ |
||||||||
|
dx |
|||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
dx |
|
|
|
|
|
|
|||||||||||||||||
|
d |
½ |
sin |
½ |
f |
ð |
x |
Þ&& ¼ þ |
cos |
½ |
f |
ð |
x |
Þ& |
df ðxÞ |
¼ þ |
cos |
½ |
f |
|
x |
f 0 |
ð |
x |
Þ |
|||||||||
|
dx |
|
||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
dx |
|
|
|
|
ð Þ& |
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
d |
|
|
|
e f ðxÞ |
|
e f ðxÞ |
df ðxÞ |
|
e f ðxÞ f 0 |
|
x |
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
dx h |
¼ |
¼ |
ð |
Þ |
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
i |
|
|
|
|
|
dx |
|
|
|
|
|
|
|
|
|
|
|||||||||||
Reversed: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Z |
|
|
cos ½ f ðxÞ& f 0ðxÞdx ¼ þ sin ½ f ðxÞ& |
|
|
|
|
|
|
|
Z
sin ½ f ðxÞ& f 0ðxÞdx ¼ cos ½ f ðxÞ&
Z
ef ðxÞ f 0ðxÞdx ¼ e f ðxÞ
4.8.2Trigonometric Integrals
Some trigonometric integrals are: |
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
Z0 |
2π cos ðθÞdθ ¼ Z0 |
2π sin ðθÞdθ ¼ 0 |
|
|
|
|
|
|
||||||
|
Z0 |
2π cos ðθÞ sin ðθÞdθ ¼ 0 |
|
|
|
|
|
|
|
|
|||||
|
1 |
2π |
|
1 |
|
2π |
1 |
cos |
2θ |
|
|
|
|
||
|
Z0 |
cos 2ðθÞdθ ¼ |
|
Z0 |
þ |
2 |
ð |
|
Þ dθ |
|
|
||||
2π |
2π |
|
|
|
|||||||||||
|
|
|
¼ 2π |
2 Z0 |
2π |
|
|
2 Z0 |
2π |
cos ð2θÞdθ ¼ |
2 |
||||
|
|
|
1dθ þ 2π |
|
|||||||||||
|
|
|
|
1 |
1 |
|
|
1 |
1 |
|
|
|
1 |

116 4 Acoustic Intensity and Specific Acoustic Impedance
|
|
|
|
|
1 |
|
|
|
|
|
|
2π |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
2π |
|
1 |
|
cos |
2θ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
Z0 |
|
sin 2ðθÞdθ |
¼ |
|
|
|
|
|
Z0 |
|
|
|
|
|
|
2 ð |
|
|
|
Þ dθ |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||
|
|
|
|
|
|
2π |
|
2π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2π |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2π |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
¼ 2π 2 Z0 |
|
1dθ 2π 2 Z0 |
|
|
|
cos ð2θÞdθ ¼ 2 |
|
|
|
|||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
1 |
|
|
|
|
|
|
|
|
|
1 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
||||||||||
|
|
|
Change 2π to period T: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
T Z |
T |
cosðωtÞdt ¼ T Z |
T |
|
|
|
|
|
|
|
|
|
|
|
|
|
T |
cos |
|
|
|
|
T t |
|
dt ¼ T Z |
T |
sin |
|
T |
t dt ¼ 0 |
|
|
|
||||||||||||||||||||||||||||||||
|
|
sinðωtÞdt ¼ T Z |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||
1 |
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
2π |
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
2π |
|
|
|
|
|
|
|
|
|
|||||||||
0 |
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
T Z0 |
T |
cos ðωtÞ sin ðωtÞdt ¼ 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
T |
|
|
1 |
|
|
T |
|
1 |
|
cos |
2ωt |
|
|
|
|
|
|
|
|
1 1 |
|
T |
|
|
|
|
1 1 |
|
|
T |
|
|
|
|
4π |
|
|
|
1 |
|||||||||||||||||||||||
|
|
|
Z |
|
cos2ðωtÞdt ¼ |
|
|
Z |
|
|
|
þ |
2 |
ð |
|
|
|
|
Þ |
dt ¼ |
|
|
|
T Z |
|
1dt þ |
|
|
|
|
|
|
|
Z |
|
cos |
|
|
t dt ¼ |
|
|
|
|||||||||||||||||||||||
T |
|
T |
|
|
|
|
|
|
2 |
0 |
2 |
T |
|
T |
2 |
||||||||||||||||||||||||||||||||||||||||||||||||||
0 |
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
||||||
1 |
|
T |
|
|
1 |
|
|
|
T |
|
1 |
|
cos 2ωt |
|
dt ¼ |
1 1 |
|
T |
|
|
|
|
1 1 |
|
|
|
T |
|
|
|
4π |
|
|
|
1 |
|
|||||||||||||||||||||||||||||
|
|
Z0 |
|
sin2ðωtÞdt ¼ |
|
Z0 |
|
|
|
2 |
ð |
|
|
|
|
Þ |
|
T Z0 |
1dt |
|
|
|
Z0 |
|
cos |
|
t dt ¼ |
|
|
||||||||||||||||||||||||||||||||||||
|
T |
|
T |
|
|
|
|
|
|
2 |
2 |
T |
|
T |
2 |

Chapter 5
Solutions of Spherical Wave Equation
In the previous chapter, formulas for sound pressure, flow velocity, acoustic intensity, and specific acoustic impedance of plane waves were formulated in Cartesian coordinates. In this chapter, formulas for these properties will be developed in spherical coordinates.
The formulations of these properties in a spherical coordinate system are more useful than in a Cartesian coordinate system in terms of applications and numerical calculations because any vibrating surface can be treated as a point source. A point source radiates sound in radial directions and can be easily formulated in a spherical coordinate system.
The acoustic wave solutions in Cartesian coordinates were derived in the previous chapter. The acoustic wave solutions in spherical coordinates will be derived in this chapter. The following is a summary table of the acoustic wave solutions in both Cartesian and spherical coordinate systems:
General forms |
|
Cartesian coordinates |
|
Spherical coordinates |
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
! |
! |
|
|
|
b |
|
|
|
b |
|
|
|
|
b |
|
|
|
! |
|
|
|
b |
|
|
|
b |
|
|
|
|
b |
|
|
|
|
|
|
||||||||||||
Position vector: r |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
r ¼ xex þ yey þ zez |
|
|
r ¼ rer þ θeθ þ ϕeϕ |
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||
Gradient operator: |
|
|
|
|
|
∂ |
|
|
|
|
|
|
∂ |
|
|
|
|
|
∂ |
|
|
|
|
|
∂ |
|
|
|
|
1 |
∂ |
|
|
|
|
1 |
|
|
|
∂ |
|
|||||||||||||
|
¼ |
|
ex |
þ |
|
|
ey |
|
þ |
|
|
ez |
|
¼ |
|
|
er |
þ |
r |
|
|
eθ |
þ |
|
|
|
|
eφ |
||||||||||||||||||||||||||
∂x |
∂y |
|
∂z |
|
∂r |
∂θ |
r2 sin θ |
Þ |
∂φ |
|||||||||||||||||||||||||||||||||||||||||||||
The Laplacian |
|
|
|
b2 |
|
|
|
|
|
b |
|
|
|
b |
|
|
|
|
b2 |
|
|
|
|
b |
ð |
|
|
b |
||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||
|
|
2 |
|
|
∂2 |
|
1 |
|
|
|
|
|
Dim |
|
|
|
|
|
2 ∂2 |
2 |
|
∂ |
1 |
|
Dim |
|
|
|
|
|
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
operator: 2 |
|
|
|
|
¼ ∂x |
|
|
|
|
|
Þ |
|
|
|
|
¼ ∂r |
þ r |
|
|
|
Þ |
|
|
|
|
|||||||||||||||||||||||||||||
|
|
|
|
ð |
|
|
|
|
|
|
|
|
∂r |
ð |
|
|
|
|
|
|
||||||||||||||||||||||||||||||||||
p |
|
ρ |
|
∂ !u |
|
uðx, tÞ ¼ ρo |
|
R ∂x pðx, tÞ dt |
uðr, tÞ ¼ ρo |
R ∂r pðr, tÞ dt |
|
|
|
|
||||||||||||||||||||||||||||||||||||||||
Euler’s force equation: |
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
∂ |
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
∂ |
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
¼ 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
∂t |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
Wave equations: |
|
∂2 |
|
|
|
|
|
|
|
|
1 |
|
|
∂2 |
|
|
|
|
|
|
|
∂2 |
|
|
|
|
|
|
|
|
|
|
1 |
|
|
∂2 |
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
pðx, tÞ ¼ |
|
|
|
pðx, tÞ |
|
|
½rpðr, tÞ& ¼ |
|
|
|
½rpðr, tÞ& |
|
|
|
||||||||||||||||||||||||||||||||||
2 |
|
|
1 ∂2 |
|
∂x2 |
c2 |
∂t2 |
∂r2 |
c2 |
∂t2 |
|
|
|
|||||||||||||||||||||||||||||||||||||||||
|
p ¼ |
|
|
|
p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
c2 |
∂t2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
p |
|
|
|
|
|
|
|
|
|
p (x, |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rp(r, t) ¼ A cos (ωt kr + θ) |
|
|||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
t) ¼ A cos (ωt kx + θ ) |
Form 2 : REP |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
Form 2 : REP |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(continued) |
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 |
117 |
H. Lin et al., Lecture Notes on Acoustics and Noise Control, https://doi.org/10.1007/978-3-030-88213-6_5