
- •Foreword
- •Preface
- •Contents
- •1 Introduction to Nonlinear Acoustics
- •1.1 Introduction
- •1.2 Constitutive Equations
- •1.3 Phenomena in Nonlinear Acoustics
- •References
- •2 Nonlinear Acoustic Wave Equations for Sound Propagation in Fluids and in Solids
- •2.1 Nonlinear Acoustic Wave Equations in Fluids
- •2.1.1 The Westervelt Equation [1]
- •2.1.2 The Burgers’ Equation [2]
- •2.1.3 KZK Equation
- •2.1.4 Nonlinear Acoustic Wave Equations for Sound Propagation in Solids
- •References
- •3 Statistical Mechanics Approach to Nonlinear Acoustics
- •3.1 Introduction
- •3.2 Statistical Energy Analysis is Transport Theory
- •3.3 Statistical Energy Analysis
- •3.4 Transport Theory Approach to Phase Transition
- •References
- •4 Curvilinear Spacetime Applied to Nonlinear Acoustics
- •4.1 Introduction and Meaning of Curvilinear Spacetime
- •4.2 Principle of General Covariance
- •4.3 Contravariant and Covariant Four-Vectors
- •4.4 Contravariant Tensors and Covariant Tensors
- •4.5 The Covariant Fundamental Tensor gμν
- •4.6 Equation of Motion of a Material Point in the Gravitational Field
- •4.8 The Euler Equation of Fluids in the Presence of the Gravitational Field
- •4.9 Acoustic Equation of Motion for an Elastic Solid in the Presence of Gravitational Force
- •Reference
- •5 Gauge Invariance Approach to Nonlinear Acoustical Imaging
- •5.1 Introduction
- •5.3 Illustration by a Unidirectional Example
- •5.4 Quantization of the Gauge Theory
- •5.5 Coupling of Elastic Deformation with Spin Currents
- •References
- •6.1 Introduction
- •6.2 The Thermodynamic Method
- •6.2.1 Theory
- •6.2.2 Experiment
- •6.3 The Finite Amplitude Method
- •6.3.1 The Wave Shape Method
- •6.3.2 Second Harmonic Measuements
- •6.3.3 Measurement from the Fundamental Component
- •6.4 B/A Nonlinear Parameter Acoustical Imaging
- •6.4.1 Theory
- •6.4.2 Simulation
- •6.4.3 Experiment [17]
- •6.4.4 Image Reconstruction with Computed Tomography
- •References
- •7 Ultrasound Harmonic Imaging
- •7.1 Theory of Ultrasound Harmonic Imaging
- •7.2 Methods Used to Isolate the Second Harmonic Signal Component
- •7.3 Advantages of Harmonic Imaging
- •7.4 Disadvantages of Harmonic Imaging
- •7.5 Experimental Techniques in Nonlinear Acoustics
- •7.6 Application of Ultrasound Harmonic Imaging to Tissue Imaging
- •7.7 Applications of Ultrasonic Harmonic Imaging to Nondestructive Testing
- •7.8 Application of Ultrasound Harmonic Imaging to Underwater Acoustics
- •References
- •8 Application of Chaos Theory to Acoustical Imaging
- •8.1 Nonlinear Problem Encountered in Diffraction Tomography
- •8.4 The Link Between Chaos and Fractals
- •8.5 The Fractal Nature of Breast Cancer
- •8.6 Types of Fractals
- •8.6.1 Nonrandom Fractals
- •8.6.2 Random Fractals
- •8.7 Fractal Approximations
- •8.8 Diffusion Limited Aggregation
- •8.9 Growth Site Probability Distribution
- •8.10 Approximating of the Scattered Field Using GSPD
- •8.11 Discrete Helmholtz Wave Equation
- •8.12 Kaczmarz Algorithm
- •8.14 Applying GSPD into Kaczmarz Algorithm
- •8.15 Fractal Algorithm using Frequency Domain Interpretation
- •8.16 Derivation of Fractal Algorithm’s Final Equation Using Frequency Domain Interpolation
- •8.17 Simulation Results
- •8.18 Comparison Between Born and Fractal Approximation
- •References
- •9.1 Introduction
- •9.2 Mechanisms of Harmonic Generation Via Contact Acoustic Nonlinearity (CAN)
- •9.2.1 Clapping Mechanism
- •9.2.2 Nonlinear Friction Mechanism
- •9.3 Nonlinear Resonance Modes
- •9.4 Experimental Studies on Nonclassical CAN Spectra
- •9.4.1 CAN Application for Nonlinear Acoustical Imaging and NDE
- •9.5 Conclusions
- •References
- •10.1 Introduction
- •10.2 Principles of Modulation Acoustic Method
- •10.3 The Modulation Mode of Method of Crack Location
- •10.4 Experimental Procedure of the Modulation Method for NDT
- •10.5 Experimental Procedures for the Modulation Mode System
- •10.6 Conclusions
- •References
- •11.1 Introduction
2.1 Nonlinear Acoustic Wave Equations in Fluids |
7 |
From (2.13) one has |
|
|
|
|
|
|
|
|
|
||
|
|
|
|
∂ 2 |
∂ |
|
|
|
|||
|
|
|
ρ0 |
|
|
Ui = |
|
|
Pi j |
|
|
|
|
|
∂ t 2 |
∂ a j |
|
||||||
In terms of (2.14), and 2.15), (2.16) becomes |
|
|
|
||||||||
|
∂ 2 |
∂ 2 |
|
|
|
∂Um |
|
||||
ρ0 |
|
Ui = |
|
Uk Ci j kl + Mi j klmn |
|
|
|||||
∂ t 2 |
∂ a j ∂ al |
∂ an |
where Mi j klmn is given by (2.15).
Equation (2.17) is similar to the Westervelt equation for fluids.
(2.16)
(2.17)
References
1.Westervelt, P.J. 1963. Parametric acoustic array. Journal of the Acoustical Society of America 35: 535–537.
2.Burgers, J.M. 1948. A mathematical model illustrating the theory of turbulence. Advance in Applied Mechanics 1: 171–199.
3.Zabolotskaya, E.A., and R.V. Khokhlov. 1969. Quasi-plane waves in the nonlinear acoustics of confined beams. Soviet Physics Acoustics 8: 35–40.
4.Kuznetsov, V.P. 1971. Equations of nonlinear acoustics. Soviet Physics Acoustics 16: 467–470.