
- •1. Геоинформатика как научная дисциплина, технология и сфера производственной деятельности. Определение и задачи геоинформатики.
- •2. Взаимосвязь географии, информатики и геоинформатики. Взаимодействие геоинформатики с науками о Земле и обществе
- •3. Периодизация развития геоинформатики. Предпосылки зарождения геоинформатики.
- •4. Развитие геоинформационных технологий в 1960-е годы (становление Канадской и Шведской гис).
- •5. Характерные черты развития геоинформационных технологий в 1970-е годы.
- •6. Появление и развитие с 1990-х гг. Элементов интеллектуализации гис.
- •7. Основные понятия и термины геоинформатики
- •8. Классификация гис: по пространственному охвату, предметной области, проблемной ориентации, функциональности и уровню управления.
- •9. Источники пространственных данных и их типы. Способы получения данных.
- •10. Пространственный объект как цифровое представление (цифровая модель) объекта реальности.
- •11. Векторная модель географических данных.
- •12. Растровая модель географических данных
- •13. Аэросъемка, как метод формирования актуальных и точных данных для обновления картографической информации в гис
- •14. Оптико-электронные космические системы наблюдения. Лидары. Системы спутникового позиционирования: gps, глонасс, galileo.
- •15. Структура гис.
- •16. Особенности технического и программного обеспечения гис. Функции гис.
- •17. Общая характеристика программных коммерческих гис-пакетов.
- •18. Хранение и преобразование растровых данных. Операции с растровыми слоями бд
- •19. Оверлей растровых слоев
- •20. Типовой набор гис-инструментов.
- •21. Задачи анализа, моделирования и прогнозирования природных и техногенных процессов.
- •23. Обработка данных гис: связь: точка-точка…
- •24. Растровый анализ в гис.
- •25. Основа для построения цмр: топографическая карта…
- •26. Модели данных для хранения цмр
- •31. Спутниковые геодезические системы.
- •32. Порядок действий геопривязки изображения в гис.
- •33. Этапы создания гис: создание векторной модели территории; наполнение семантической табличной базы данных; настройка полученной гис; работа с гис.
- •36. Оформление векторной карты.
- •38. Управление визуализацией.
- •39. Операции с объектами в гис.
- •40. Многопользовательская сетевая гис.
- •41. Методики организации файловой структуры векторных карт: единая база данных; база данных с послойной файловой структурой.
- •42. Использование гис для решения задач территориального планирования.
- •43. Применение гис в секторе разведки и добычи полезных ископаемых.
- •44. Применение гис в секторе логистики, розничного рынка, бизнес-менеджере.
- •45. Применение гис в секторе безопасности и охраны окружающей среды.
- •46. Земельная информационн система рб, корпоративные гис, мобильные гис.
- •47. Навигационные карты и гис.
- •48. Мобильные географические службы.
- •49. Гис и Интернет.
- •50. Инфраструктура пространственных данных.
9. Источники пространственных данных и их типы. Способы получения данных.
Источники пространственных данных для ГИС — основа их информационного обеспечения.
При анализе и оценке различных типов источников как основы информационного обеспечения ГИС следует иметь в виду их общие свойства, а именно пространственный охват, масштабы, разрешение, качество, форму существования (аналоговая — цифровая), периодичность поступления, актуальность и обновляемость, условия и стоимость получения, приобретения и перевода в цифровую форму (цифрования), доступность, форматы представления, соответствие стандартам и иные характеристики, которые объединяются обобщающим термином «метаданные» («данные о данных»)
В качестве источников пространственных данных выступают аналоговые или цифровые данные, которые служат основой для создания моделей пространственных данных. Существует несколько основных типов источников пространственных данных:
1. Картографические источники, в т.ч. карты, планы, атласы, схемы и другие картографические изображения, нанесенные на бумагу, картон, пленку, пластик или иные носители. Такие данные должны быть вначале переведены в электронный вид с помощью сканирования или цифрового фотографирования. Полученные растровые изображения могут быть непосредственно использованы в качестве слоя карты в ГИС, либо их можно векторизовать - перевести в векторный вид. Кроме современного метода «сканирование-векторизация», ранее широко (сейчас уже достаточно редко) использовался метод цифрования (дигитализации), когда векторные данные непосредственно «скалывались» специальным пером с твердой копии карты, уложенной поверх дигитайзера (цифрового планшета).
2. Данные дистанционного зондирования (ДДЗ), включая аэро- и космоснимки в видимом, инфракрасном, ультрафиолетовом, радиодиапазоне или во многих диапазонах волн сразу; результаты лазерного сканирования поверхности земли, а также другие данные, полученные неконтактным способом.
3. Данные полевых изысканий, полученные с использованием различных геодезических приборов (теодолиты, нивелиры, электронные тахеометры, лазерные сканеры) и приборов глобальной спутниковой навигации (GPS, ГЛОНАСС, Galileo).
4. Данные натурных наблюдений на гидрометеорологических и иных постах и станциях. Как правило, эти данные характеризуют распределение полей некоторых явлений на Земле, таких как температура, осадки, скорость и направление ветра и др. Эти данные обычно передаются в ГИС в виде точечных объектов (с координатами места наблюдения), которым заданы в виде атрибутов измеренные значения.
5. Статистические данные ведомственной и государственной статистики. Такие данные обычно помещаются в ГИС в виде атрибутов пространственных объектов.
Как правило, источники пространственных данных не могут быть непосредственно переданы в ГИС для использования.
10. Пространственный объект как цифровое представление (цифровая модель) объекта реальности.
Объектом информационного моделирования в ГИС является пространственный объект. Это одно из ключевых понятий геоинформатики. Он может быть определен как цифровое представление (модель) объекта реальности (местности), содержащее его местоположение и набор свойств (характеристик, атрибутов), или сам этот объект.
Некоторое множество цифровых данных о пространственных объектах образует пространственные данные. Они состоят из двух взаимосвязанных частей: позиционной и атрибутивной составляющих, которые образуют описание пространственного положения и тематического содержания данных.
Пространственные объекты, как абстрактные представления реальных объектов в ГИС, разнообразны и традиционно классифицируются соответственно пространственной локализации отображаемых ими объектов реальности или пространства, которое они образуют. Базовыми (элементарными) типами пространственных объектов, которыми оперируют современные ГИС, обычно считаются (в скобках приведены их синонимы):
- точка (точечный объект) – 0-мерный объект, характеризуемый плановыми координатами и высотой;
- линия (линейный объект, полилиния) – 1-мерный объект, образованный последовательностью не менее двух точек с известными плановыми координатами и высотами (линейными сегментами или дугами);
- область (полигон, полигональный объект, контур, контурный объект) – 2-мерный (площадной) объект, внутренняя область, ограниченная замкнутой последовательностью линий (дуг в векторных топологических моделях (данных) или сегментов в модели «спагетти») и идентифицируемая внутренней точкой (меткой);
- пиксел (пиксель, пэл) – 2-мерный объект, элемент цифрового изображения, наименьшая из его составляющих, получаемая в результате дискретизации изображения (разбиения на далее неделимые элементы растра);
- элемент дискретизации координатной плоскости в растровой модели (данных) ГИС.
Общее цифровое описание пространственного объекта включает: наименование, указание местоположения, набор свойств, отношения с другими объектами.