Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

уср 2 дис

.docx
Скачиваний:
15
Добавлен:
01.05.2023
Размер:
217.47 Кб
Скачать

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УО «БАРАНОВИЧСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Уср № 2

Дисциплина: «Методы дистанционных исследований»

Тема: «Физические основы, технологические средства и технология получения аэрокосмических снимков. Оптико-электронные сканеры.»

Подготовила:

Студентка 2 курса

Группы ГЭ-21

White wolf

Проверил:

Преподаватель Лукашов А.А.

СОДЕРЖАНИЕ

  • Введение

  • Оптико-электронные сканеры

  • Заключение

Введение

Оптико-электронными системами называют приборы, в которых информация о наблюдаемом объекте переносится оптическим излучением, а ее первичная обработка сопровождается преобразованием энергии излучения в электронный сигнал. Структура многих современных оптико-электронных приборов достаточно сложна. Она включает большое число различных по своей природе и принципу действия звеньев – аналоговых и цифровых преобразователей электрических сигналов, микропроцессоров, механических и электромеханических узлов и др. Действие оптико-электронных приборов основано на способности к приему и преобразованию электромагнитного излучения в различных диапазонах оптической области спектра: от ультрафиолетовой до видимой и инфракрасной. 

Оптико-электронные сканеры

Сканирующие съёмочные системы (сканеры) отличаются от других прежде всего принципом построения изображения, которое строится построчным сканированием (просматриванием) местности.

Конструктивно сканер состоит из оптической системы, фотоэлектронных преобразователей, устройства приёма и регистрации изображения. С помощью сканеров формируется изображение, состоящее из множества отдельных, последовательно получаемых элементов изображения - пикселей в пределах полос (строк, сканов). Размер пиксела определяет детальность (разрешение на местности) изображения.

В сканирующих системах применяют различные типы приёмников электромагнитного излучения: тепловые (теплоэлектрические) и фотонные (фотоэлектрические). Тепловые работают на основе преобразования тепловой энергии в электрический сигнал, в фотонных системах уровень сигнала определяется количеством поглощённых фотонов. Наибольшее применение получили сканеры, приёмниками в которых служат линейки ПЗС (приборы с зарядной смесью). Различные типы сенсоров имеют различную спектральную чувствительность и охватывают спектральный интервал от видимой зоны до дальней инфракрасной зоны. Выбор приёмника излучения и его спектральной чувствительности зависит от спектрального интервала съёмки.

Рисунок 1- оптико-электронный сканер

Сканирование местности осуществляется в одном направлении за счёт движения самолёта (спутника) вперёд, а в другом (перпендикулярном линии полёта) - за счёт вращения или колебания призмы (зеркала). Колебательное перемещение призмы (зеркала) в сочетании с движением самолёта (спутника) обеспечивает непрерывный последовательный охват определённой полосы местности, размер которой зависит от апертуры (действующего отверстия оптической системы объектива) сканера и высоты полёта самолёта или спутника. Ширина снимаемой полосы местности определяется углом сканирования сканера, а линейное разрешение на местности (ширина скана, размер пиксела) - мгновенным углом зрения. У обзорных сканеров угол сканирования достигает , у высокоинформативных (детальных) - и меньше. Соответственно этому и мгновенный угол зрения устанавливают от нескольких градусов до десятых долей минуты. Угол сканирования и мгновенный угол зрения, соответственно полоса съёмки и разрешение на местности, - взаимозависимые величины. Чем выше разрешение, тем уже полоса съёмки. Так, при съёмке из космоса при разрешении 1-2 км. Снимают полосу местности в несколько тысяч километров, а при разрешении 20-50 м ширина полосы съёмки не превышает 100-200км.

Оптико-механические сканеры бывают одно- и многоканальные (2 и более). Обычно для съёмки земной поверхности применяют сканеры, работающие в видимом и ИК диапазонах (0,5-12 мкм). Результат регистрации излучения при съёмке методом оптико-механического сканирования представляет собой матрицу многомерных векторов. Каждый вектор отображает определённую элементарную площадку (пиксель) на Земле, а каждая его компонента соответствует одному из спектральных каналов.

При съёмке в видимом и ближнем ИК - диапазонах (0,4 - 3 мкм) применяют фотоэлектрические, а в среднем и дальнем ИК - диапазонах (3 -12 мкм) - термоэлектрические приёмники излучения. К фотоэлектрическим приёмникам относят электронные приборы, действие которых основано на внешнем (электровакуумные фотоэлементы, фотоэлектронные умножители) и внутреннем (полупроводниковые фотосопротивления, фотодиоды и др.) фотоэффектах. Термоэлектрические приёмники основаны на термоэлектронной эмиссии, они реагируют на поглощённое излучение через нагревание чувствительного элемента, что позволяют регистрировать ИК - тепловое излучение в широком спектральном диапазоне. К числу термоэлектрических приёмников относятся болометры, радиационные термоэлементы (термопары) и др. Тепловую съёмку осуществляют сканирующими радиометрами в ночное и дневное время суток.

В сканерах устанавливают несколько сенсоров, позволяющих получать изображение одновременно в различных спектральных каналах. Информацию, полученную в процессе сканерной съёмки, передают в виде цифрового изображения по радиоканалу на приёмный пункт или записывают на борту на магнитный носитель. Материалы съёмки потребителям передаются в виде записи на магнитном носителе, например на СД - дисках, с последующей визуализацией на местах обработки снимков.

Заключение

Оптико-электронный (ОЭ) способ относится к невидимому диапазону съемки (нефотографическому). Ему всего несколько десятилетий существования. Необходимость оперативной передачи материалов съемки из космоса привела к интенсивному его развитию, а также к развитию сканерных съемочных систем. При значительном разнообразии конструктивных решений они основаны на общем принципе. Принцип сканерной съемки заключается в поэлементном считывании вдоль узкой полосы отраженного земной поверхностью излучения, а развертка изображения идет за счет движения носителя, поэтому оно принимается непрерывно.

Барановичи, 2020

Соседние файлы в предмете Дистанционные методы исследования