
- •1.Глубинное строение Земли. Методы изучения внутреннего строения Земли.
- •3.Ядро Земли. Строение и состав, физический свойства.
- •4.Химический состав земной коры. Весовые кларки наиболее распространенных химических элементов. Причины изменения химического состава земной коры.
- •5.Строение земной коры. Континентальная, океанская, субконтинентальная, субокеанская земная кора.
- •6.Минералы. Способы образования минералов. Формы минералов и агрегатов. Физические свойства минералов.
- •9.Магматические горны породы. Химический состав, структура и текстура. Классификация.
- •10.Осадочные горные породы. Условия образования, классификация осадочных горных пород.
- •Образование осадочного материала.
- •11.Метаморфические горные породы. Условия образования и классификация метаморфических пород.
- •12.Интрузивный и эффузивный магматизм. Дифференциация магмы, ликвация. Реакционный ряд н.Л. Боуэна
- •Интрузивный магматизм
- •Реакционный ряд н. Л. Боуэна
- •13.Эффузивный магматизм. Области вулканической деятельности и землетрясений на Земле. Тихоокеанский, Средиземноморско-Индонезийский, Атлантический вулканические пояса
- •14.Типы вулканических извержений: Гавайский, Стромболианский, Пелейский. Маары и диатремы. Продукты вулканических извержений
- •15.Возраст Земли. Геохронологическая и стратиграфическая шкалы. Относительная и абсолютная геохронология. Методы определения абсолютного и относительного возраста горных пород. Правило н. Стено.
- •16. Континентальные платформы. Структурные этажи платформ. Древние платформы. Молодые платформы. Щиты.
- •17. Плиты. Зоны перикратонных опусканий. Антеклизы, синеклизы, авлакогены.
- •18.Подвижные пояса континентов. Складчатые пояса. Синклинории и антиклинории. Эпиплатформенные орогены. Континентальные рифты.
- •Континентальные рифты
- •19.Геосинклинали. Теория развития геосинклиналей.
- •20. Выветривание. Процессы, факторы выветривания. Физическое выветривание: температурное, морозное выветривание.
- •21.Химическое выветривание, факторы и процессы. Гидратация, окисление, гидролиз, карбонатизация.
- •22.Элювий. Стадии выветривания. Кора выветривания.
- •23. Геологическая деятельность ветра. Дефляция, корразия. Транспортировка рыхлого материала. Эоловая аккумуляция и эоловые отложения.
- •24. Пустыни: дефляционные и аккумулятивные. Формы эолового рельефа.
- •25. Геологическая деятельность текучих поверхностных вод. Плоскостной склоновый смыв. Делювий. Регрессивная эрозия оврага.
- •26. Геологическая деятельность рек. Эрозионно-аккумулятивная деятельность водного потока. Базис эрозии.
- •29. Геологическая работа ледников. Образование ледников. Снеговая линия. Горные ледники, покровные ледники. Айсберги. Движение ледников.
- •30. Ледниковая эрозия. Морены. Флювиогляциальные процессы. Ледниковые эры, периоды, эпохи.
- •31.Мировой океан. Рельеф дна Мирового океана.
- •32. Срединно-океанические хребты. Трансформные разломы.
- •33. Движение воды морей и океанов. Волновые движения. Морские течения.
- •34.Животный и растительный мир океана. Биономические зоны моря.
- •35. Осадочный материал морей и океанов. Седиментогенез, диагенез, литификация, катагенез, гипергенез.
- •36. Коралловые рифы, их типы.
- •37.Геологическая деятельность озер. Эндогенные и экзогенные озера. Смешанный тип озер. Разрушительная и аккумулятивная деятельность озер. Озерные отложения.
- •38.Геологическая деятельность болот. Низинные, верховые, переходные, приморские болота. Органогенные и хемогенные отложения болот.
- •39.Гравитационные процессы: причины, движущие силы. Оползни. Коллювий. Классификация гравитационных процессов.
- •40. Водно-гравитационные процессы. Солифлюкция, сели, лахары.
- •41. Фациальный анализ. Методы фациального анализа. Биофациальный (палеонтологический) метод. Классификация фаций.
- •42. Морские фации. Факторы, влияющие на осадконакопление в Мировом океане. Фации шельфа, материкового склона, ложа Мирового океана. Состав морских фаций.
- •43. Континентальные фации. Признаки континентальных фаций. Генетические типы континентальных фаций: аллювий, пролювий, элювий, делювий, морена, эоловые пески.
- •44. Палеонтология как наука. Формы сохранности органических остатков. Группы организмов, выделяемых по условиям существования: по условиям жизни, по способу существования, по способу питания.
- •46.Догеологическая стадия развития Земли
- •47. Докембрий. Формирование земной коры и развитие органического мира в докембрии.
- •48. Формирование земной коры и развитие органического мира в раннем палеозое.
- •Ордовикский период.
- •Силурийский период.
- •49. Формирование земной коры и развитие органического мира в позднем палеозое.
- •50.Формирование земной коры и развитие органического мира в мезозойскую эру.
- •51. Формирование земной коры и развитие органического мира в кайнозойскую эру.
- •52. Структурные комплексы и этажи платформенного чехла территории Беларуси: готский, нижнебайкальский, верхнебайкальский, каледонский, герцинский, киммерийско-альпийский.
- •54.Геоструктурные области кристаллического фундамента Беларуси
- •59. Полезные ископаемые Беларуси: химическое и агрономическое сырье.
- •60. Полезные ископаемые Беларуси: сырье для производства строительных материалов.
- •61. Горизонтальное залегание слоев. Согласное и несогласное залегание. Признаки горизонтального залегания слоев на геологических картах
- •62. Наклонное залегание слоев. Изображение наклонно залегающих слоев на геологических картах
- •63. Складчатое залегание слоев. Элементы складок. Изображения складчатых структур на геологических картах.
- •64.Типы разрывных нарушений. Изображения разрывов на геологических картах
- •65. Условные обозначения на геологических картах.
- •66. Геологический разрез. Методика построение разреза
- •69.Диагностические свойства минералов.
- •70.Оптические свойства минералов. Визуальное определение оптических свойств минералов.
- •71. Механические свойства минералов, их определение.
- •72. Формы природных выделений минералов, их определение.
- •73. Химический состав минералов. Классификация минералов.
- •76 Осадочные горные породы. Определение главных признаков осадочных горных пород.
- •77. Классификация магматических горных пород. Определение магматических горных пород.
- •78. Генетические типы минералов. Реакционный ряд Боуэна. Реакционный ряд н. Л. Боуэна
- •79. Руководящие ископаемые.
- •80.Формы сохранности ископаемых остатков.
33. Движение воды морей и океанов. Волновые движения. Морские течения.
Муссонные и бризовые течения. Приливы и отливы.
Приливы и отливы - это периодические колебания уровня воды в океане. Их появление обусловлено силами притяжения Солнца и Луны. Во время прилива вода течет к берегу, во время отлива - от него. Приливы - очень сложные явления, на которые влияет взаимное расположение Земли, Солнца и Луны, также, глубина, очертания берегов и т.д. Самый большой по высоте прилив наблюдается у берегов Северной Америки в заливе Фенди. Уровень воды поднимается на высоту шестиэтажного дома. Иногда встречаются, так называемые, рыбные приливы. Вместе с океаническими водами на берег приходит масса рыбы, которую предприимчивые рыбаки ловят, предварительно развесив сети на высокие столбы.
Океан никогда не бывает спокойным и вода в нем постоянно движется. Возникновение волн может быть обусловлено движением воздушных масс и такие колебания воды называют ветровыми волнами. Обычно их высота не превышает 20 м.Самые высокие бывают в Южном полушарии, где господствуют Западные ветра. Высота волн зависит не только от силы ветра, но и от глубины океана. Не случайно самые большие волны встречаются в Тихом океане. Самые высокие волны: в 1993 году в Тихом океане были замечены волны высотой 34 м; в 1972 году В Атлантическом океане столкнулись с волной высота которой составляла 26 м. Одни из самых больших по высоте волн - это цунами. Их появление обусловлено извержениями вулканов и землетрясениями. Возникают, чаще всего, в Тихом океане. В Атлантике и Индийском океане их не было уже почти 1000 лет.
Беспрерывное движение морских вод называют морскими течениями. Их движение обусловлено действием воздушных масс. Самыми важными считаются Северное и Южное Пассатные течения, течение Западных Ветров, Гольфстрим, Северотихоокеанское и Североатлантическое.
На направление течений в Мировом океане оказывает влияние отклоняющая сила, вызванная вращением Земли, — сила Кориолиса. В Северном полушарии она отклоняет течения вправо, а в Южном — влево. Скорость течений в среднем не превышает 10 м/с, а в глубину они распространяются не более чем на 300 м. Кроме приливов и отливов, течений, волнения воды производятся ветрами.
Приливы и отливы. Приливы и отливы, периодические (два раза в сутки через 6 прибл. часов), подъемы и понижения уровня воды в океане вследствие притяжения луны и отчасти солнца; наблюд. по берегам, в открытом океане незаметны. Луна притягивает сильнее находящуюся против нее поверхность воды, нежели более удаленное от нее дно океана; между тем, на отвращенной от нее части земной поверхности, дно притягивается сильнее, чем вода.
Морские течения. Морские течения, поступательное движение воды в океанах и морях. Различают: постоянные, периодические и неправильные течения; поверхностные и подводные, теплые и холодные течения. Причины М. течений: приливы и отливы, разность плотностей воды, ветер. Главн. М. течения: круговорот Атлантического океана в сев. полушарии: течения сев. экваториальное, антильское, флоридское. Гольфстрим и североафриканское; в южн. полушария: южн. экваториальное, бразильское, поперечное и южно-африканское, круговорот Индийск. ок.: экваториальное, Мозамбикское, поперечное и западно-австралийское. Круговорот Тихого океана в сев. полушарии: северное экваториальное, японское (куросиво) и калифорнийское; в южн. полушарии: южное экваториальное, восточн. австралийское, поперечное и перуанское (Гумбольдтово). Полярные: гренландское и лабрадорское.
Волна - это возмущение, распространяющееся с конечной скоростью в пространстве и несущее с собой энергию. Суть волнового движения состоит в переносе энергии без переноса вещества. Любое возмущение связано с каким-то направлением (вектор электрического поля в электромагнитной волне, направление колебаний частиц при звуковых волнах, градиент концентрации, градиент потенциала и т.д.). По взаимоположению вектора возмущения и вектора скорости волны, волны подразделяются на продольные (направление вектора возмущения совпадает с направлением вектора скорости) и поперечные (вектор возмущения перпендикулярен вектору скорости). Волна несет с собой и потенциальную и кинетическую энергию. Скорость волны, т.е. скорость распространения возмущения зависит как от вида волны, так и от характеристик среды, например, от прочности бетона при затвердевании. Измеряя скорость распространения ультразвука можно определить, какую прочность набрал бетон в процессе выпаривания.В Японии предложено пропускать ультразвук через стальные изделия перпендикулярно тем поверхностям, расстояние между которыми нужно измерить. Стальные изделия помещались в остную ванну, которая просвечивалась ультразвуковыми импульсами. Измерив время необходимое для прохождения импульса от каждого вибратора, определяли внешние размеры изделия. При наличии дисперсии волн понятие скорости волны становится не однозначным; приходится различать фазовую скорость (скорость распространения определенной фазы волны) и групповую скорость, являющуюся скорость переноса энергии, что усложняет различные измерительные работы с помощью различного вида колебаний. В случае же когерентного колебания фазовая скорость может нести информацию о свойствах среды. Способ измерения паросодержания пароводяных смесей и количества парогазовых включений, отличающийся тем, что с целью повышения точности и чувствительности при измерениях паросодержания в высокочастотных трактах с большими потерями, отраженный сигнал, фаза которого характеризует измеряемый параметр, выделяют из высокочастотного тракта, усиливают, ограничивают по амплитуде и сравнивают его фазу с фазой опорного когерентного высокочастотного колебания. Способ измерения скорости ультразвука в средах основанный на определении времени распространения колебаний с помощью фазового сдвига, отличающийся тем, что с целью повышения точности измерения, модулируют колебания по фазе и одновременно пропускают через исследуемую и эталонную среду, измеряя на границах обеих сред относительную величину фазы колебаний, и по результатам измерения находят скорость ультразвука в исследуемой среде