
- •Корнеплоды
- •Многоклеточная улотрикс
- •Строение водоросли
- •Размножение и жизненный цикл улотрикс
- •Вольвокс одноклеточный или многоклеточный
- •Строение вольвокс
- •Размножение и жизненный цикл вольвокса
- •Интересные факты
- •Биологическое описание[править | править код]
- •Содержание
- •Описание фиалковые [править | править код]
- •Ботаническое описание ивовые[править | править код]
- •Простые соцветия
- •Описание[ сложноцветные править | править код]
- •Соцветие
- •Листья[править | править код]
- •Корень[править | править код]
- •Плод[править | править код]
1. Общая характеристика грибов.
К грибам в широком смысле относят гетеротрофные эукариоты с осмотрофным типом питания. С особенностями питания связаны характерные черты строения и образа жизни этих организмов. Наиболее характерные признаки грибов:
– Наиболее распространенной формой вегетативного тела является мицелий, состоящий из многократно ветвящихся нитей, которые пронизывают субстрат и всасывают из него растворенные в воде питательные вещества.
– Органические вещества в субстрате, которые являются источником питания для грибов, в большинстве случаев находятся в форме биополимеров, неспособных проникать через клеточную мембрану. В клетках грибов вырабатываются ферменты деполимеразы, которые выделяются в субстрат и разрушают полимеры до более простых органических соединений, способных транспортироваться в грибную клетку. Такие ферменты принято называть экзоферментами.
– Активное всасывание веществ из субстрата осуществляется благодаря огромному тургорному давлению, которое в грибных клетках намного выше в сравнении с другими эукариотными организмами.
– Для грибов очень характерно образование спор, которые появляются как при бесполом так и половом размножении. Узнавание грибов возможно не по вегетативному телу, а по спороношению. В связи с расположением вегетативного тела внутри субстрата и неподвижным образом жизни, в момент размножения на грибном мицелии образуются разнообразные спороносящие структуры, которые поднимаются над субстратом и образующиеся на них споры распространяются воздушными потоками на очень далекие расстояния.
Современные системы грибов
По современным представлениям, основанных на изучении геномов экоморфа «грибы» представляет собой сборную группу, в которой выделяют истинные грибы, царство Mycota или Fungi, которых большинство и меньшая по количеству видовых таксонов и менее разнообразная группа грибоподобных организмов (псевдомицеты) входит в состав царства Straminopila, объединяющего также окрашенные водоросли (Ochrophyta). Царство истинные грибы объединяет 4 отдела, различающихся строением вегетативного тела и особенностями размножения: Chytridiomycota, Zygomycota, Ascomycota, Basidiomycota.
Царство грибы — это одноклеточные и многоклеточные организмы. В настоящее время систематики насчитали более 100 тыс. видов грибов.
Грибы — гетеротрофные организмы, не имеющие хлорофилла. Они занимают промежуточное положение между животными и растениями, так как характеризуются рядом свойств, сближающих их с животными и растениями.
Общие признаки грибов и животных:
В оболочке клеток есть хитин;
в качестве запасного продукта у них накапливается гликоген, а не крахмал;
в результате обмена образуется мочевина;
отсутствие хлоропластов и фотосинтезирующих пигментов;
Общие признаки грибов и растений:
Неограниченный рост;
абсорбтивное питание, т.е. не заглатывание пищи, а всасывание;
наличие ярко выраженной клеточной стенки;
размножение спорами;
неподвижность;
способность синтезировать витамины.
Грибы-сапрофиты питаются мертвыми органическими веществами, а паразиты могут обитать на растениях, животных и человеке. Имеются также переходные формы грибов (трутовики и др.), которые часть своей жизнедеятельности проводят как сапрофиты, а другую часть — как паразиты. Грибы-сапрофиты обитают на опавших листьях, древесине и перегное.
Многие виды царства Грибов живут в сожительстве (симбиозе) с водорослями и с высшими растениями. Взаимовыгодное сожительство мицелия грибов с корнями высших растений образует микоризу (например, подберезовик с березой, подосиновик с осиной).
Многие высшие растения (деревья, твердая пшеница и др.) не могут нормально расти без микоризы. Грибы получают от высших растений кислород, выделения корней и соединения, не содержащие азота. Грибы «помогают» высшим растениям усваивать труднодоступные вещества из перегноя, активизируя деятельность ферментов высших растений, способствуют углеводному обмену, фиксируют свободный азот, который в ряде соединений используется высшими растениями, дают им ростовые вещества, витамины и т.п.
2. Строение и функции корня.
Корень и корневые системы
Корень – осевой орган растений с радиальной симметрией, нарастающий за счет апикальной меристемы и не несущий листьев. Конус нарастания корня защищен корневым чехликом.
Корневая система – совокупность корней одного растения. Форма и характер корневой системы определяются соотношением роста и развития главного, боковых и придаточных корней. Главный корень развивается из зародышевого корешка и обладает положительным геотропизмом. Боковые корни возникают на главном или придаточных корнях как ответвления. Они характеризуются трансверсальным геотропизмом (диагеотропизмом). Придаточные корни возникают на стеблях, корнях и редко на листьях. В том случае, когда у растения хорошо развит главный и боковые корни, формируется стержневая корневая система, которая может содержать и придаточные корни. Если же у растения преобладающее развитие получают придаточные корни, а главный корень незаметный или отсутствует, то формируется мочковатая корневая система.
Функции корня:
Всасывание из почвы воды с растворенными в ней минеральными солями, Функцию всасывания выполняют корневые волоски (или микоризы), расположенные в зоне всасывания.
Закрепление растения в почве.
Синтез продуктов первичного и вторичного метаболизма.
Осуществляется биосинтез вторичных метаболитов (алкалоиды, гормоны и другие БАВ).
Корневое давление и транспирация обеспечивают транспорт водных растворов минеральных веществ по сосудам ксилемы корня (восходящий ток), к листьям и репродуктивным органам.
В корнях откладываются запасные питательные вещества (крахмал, инулин).
Синтезируют в меристематических зонах ростовые вещества, необходимые для роста и развития надземных частей растения.
Осуществляют симбиоз с почвенными микроорганизмами – бактериями и грибами.
Обеспечивают вегетативное размножение.
У некоторых растений (монстера, филодендрон) выполняют функцию дыхательного органа.
Зону
корневых волосков также часто называют
зоной дифференциации (специализации).
Это не случайно. Именно здесь на поперечном
разрезе можно увидеть определенную
слоистость. Она обусловлена разграничением
слоев внутри корня.
Строение
базидиальных грибов.
Они являются в основном сапротрофами, имеют большое значение в минерализации органических соединений. К грибам базидиальным относят около тридцати процентов всех грибов. Их вегетативное тело выглядит как септированный мицелий с пряжками и без. Стенка клеточная многослойная, она состоит из глюканов и хитина. У септов сложное строение, есть долипоровые септы. Базидиомицеты — высшие грибы с многоклеточным мицелием. К ним относятся около 30 тыс. видов (и микроскопические грибы, и грибы с крупными плодовыми телами). Среди этих грибов есть паразиты растений (например, широко распространенные и очень опасные для сельскохозяйственных растений головневые и ржавчинные грибы), многочисленные почвенные сапрофиты — хорошо всем известные шляпочные грибы (например, шампиньоны, навозники). К базидиомицетам относятся и микоризообразующие шляпочные грибы, которые успешно развиваются только в тесном контакте с корнями древесных растений (например, белый, подберезовик, подосиновик и многие другие лесные грибы).
Есть среди базидиальных грибов и сапрофиты на древесине — это многочисленные трутовики — активные разрушители древесины и валежника.
Половое спороношение у них — базидиоспоры, т. е. экзогенные споры на особых выростах — базидиях (рис. 153). Такая базидия закладывается из двухъядерных клеток. Половых органов нет. Половой процесс осуществляется путем слияния двух вегетативных клеток гаплоидного мицелия, вырастающего из базидиоспоры и состоящего из одноядерных клеток. У гомоталличных видов могут сливаться гифы одного и того же мицелия. У гетероталличных, к которым относится большинство базидиальных грибов, сливаются клетки гиф, берущих начало от спор противоположных половых знаков: + и —. При этом происходит слияние цитоплазмы, а ядра объеди няются в пары — дикарионы, которые затем делятся синхронно. Такой дикариофитный мицелий (с двухъядерными клетками), пронизывая субстрат (почву, древесину, стебли и листья растений-хозяев), может существовать длительное время. У некоторых базидиальных грибов, например у трутовиков, растущих на деревьях, или у лесных шляпочных грибов, мицелий многолетний.
На концах дикариофитных гиф из двухъядерных клеток образуются базидии. На базидии развиваются 2—4 базидиоспоры, сидящие на маленьких шипообразных выростах базидии — стеригмах. Дикариофитный мицелий у большинства видов базидиальных грибов характеризуется наличием пряжек, особых клеточек у поперечной перегородки клеток мицелия. Базидии с базидиоспорами могут возникать прямо на мицелии. Но у большинства базидиомицетов они образуются на плодовых телах или внутри них.
Рассеивание базидиоспор происходит путем их активного отбрасывания. В основе этого лежит повышение в самой базидии внутриклеточного давления в результате гидролиза гликогена. Процесс гидролиза сопровождается притоком в базидию воды, в результате чего и повышается в ней давление. Оно передается к базидиоспоре через узкий канал стеригмы, что значительно его ослабляет. В результате зрелая базидиоспора получает незначительный толчок при отбрасывании и отлетает всего на несколько десятых миллиметра. В дальнейшем она подхватывается токами воздуха. При массовом отбрасывании базидиоспор у шляпочных грибов и трутовиков часто часть этих спор заносится на поверхность шляпки, и тогда можно наблюдать, как какая-либо часть шляпки, например у красной сыроежки, покрыта белым бархатистым налетом ее базидиоспор, а сероватая, например, шляпка шампиньона покрыта таким же бархатистым налетом шоколэдно-коричневых базидиоспор. В закрытых плодовых телах (у гастеромицетов) базидиоспоры не отбрасываются так активно. Они освобождаются в результате разрушения базидий и общей оболочки плодового тела, а затем разносятся токами воздуха.
Плодовые тела сложены из дикариофитного мицелия. Следовательно, в цикле развития базидиальных грибов преобладает дикариофитный мицелий.
Гаплоидная фаза короткая: базидиоспоры и мицелий, выросший из нее и существующий небольшой период. Конидиальные спороношения (бесполое размножение) у базидиальных грибов встречаются редко. Плодовые тела базидиомицетов различны по форме и консистенции. Они могут быть паутинистыми, рыхлыми, плотно-войлочными, кожистыми, деревянистыми, мягкомясистыми, могут иметь форму пленок, корочек, могут быть копытообразными или состоять из шляпки и ножки.
Спороносный слой плодового тела — гимений — располагается у более примитивных видов на верхней стороне плодовых тел, а у более высокоорганизованных — на нижней. Гимений базидиальных грибов состоит из базидий с базидиоспорами и парафиз. У некоторых видов в гимении находятся цистиды — крупные клетки, возвышающиеся над гимениальным слоем. Они защищают гимениальный слой и особенно базидий от давления сверху. Форма цистид для многих видов постоянна и часто служит признаком для их определения.
Поверхность плодового тела, несущую гимении, называют гименофором. У низших представителей он гладкий, а у более высокоорганизованных имеет форму зубцов, трубочек, пластинок.
2. Редукция гаметофита голосеменных растений.
У семенных растений наблюдается дальнейшее совершенствование в жизненном цикле и еще большее доминирование спорофита и дальнейшая редукция гаметофита. Существование гаметофита у них полностью зависит от спорофита. У голосеменных растений пыльца формируется в пыльцевых мешках мужских шишек Мужские гаметы (два спермия) образуются при делении генеративной клетки. Из вегетативной клетки образуется пыльцевая трубка, по которой продвигаются спермии. Женский гаметофит у голосеменных растений образуется в семязачатках, которые находятся на чешуях женских шишек. Из четырех образовавшихся в результате мейоза мегаспор одна прорастает (три остальные редуцируются) и образует ткань женского эндосперма (первичного эндосперма) . Это и есть женский гаметофит голосеменных растений. В ткани эндосперма образуются сильно редуцированные женские органы – архегонии, в которых и развиваются женские гаметы – яйцеклетки У покрытосеменных семязачатки (или семяпочки) находятся внутри завязи. В них также образуются четыре мегаспоры, из которых три редуцируются, а оставшаяся делится несколько раз митозом и образует восьмиядерный зародышевый мешок – женский гаметофит покрытосеменных растений. В зародышевом мешке одна из клеток превращается в женскую гамету – яйцеклетку, два гаплоидных ядра сливаются в центре зародышевого мешка и образуют диплоидную центральную клетку, а остальные клетки исчезают.
Женский гаметофит у всех голосеменных развивается полностью внутри мегаспорангия и не выходитдаже частично наружу, т. е. не соприкасается непосредственно с воздушной средой. Доступ к женскомугаметофиту осуществляется только через микропиле. Таким образом внутри семязачатка создаютсянаиболее благоприятные условия защиты женского гаметофита от высыхания. В результате происходитпостепенная редукция и упрощение женского гаметофита и архегониев, возникает возможность оченьраннего формирования яйцеклетки, и у некоторых голосеменных (вельвичия и гнетум) образуются дажеособые неотенические безархегониальные гаметофиты.
Голосеменные отличаются от папоротников также развитием мужского гаметофита, строением испособом прорастания микроспор. У папоротников, где развитие гаметофита происходит обычно лишь послевысеивания спор, прорастание спор происходит через так называемый тетрадный рубец, расположенный напроксимальном полюсе споры. У голосеменных, где мужской гаметофит сильно упрощается и его развитиеускоряется, первые деления ядра микроспоры происходят уже внутри микроспорангия. В связи с раннимразвитием мужского гаметофита и образованием гамет еще внутри оболочки споры возникаетнеобходимость в приспособлении, посредством которого микроспора может изменять свой объем. Такимприспособлением оказывается борозда на дистальном полюсе микроспоры, впервые возникающая унекоторых семенных папоротников и характерная для огромного большинства голосеменных. Бороздаслужит не только для регулирования объема пыльцевого зерна. Она становится местом выхода измикроспоры гаустории (у низших групп) или пыльцевой трубки (у гнетовых и хвойных), также являющихсяновообразованиями. Таким образом, у голосеменных, в отличие от папоротников, отверстие для выходасодержимого микроспоры образуется на дистальном полюсе. Гаустория (присоска) типа саговниковых растетгоризонтально и служит лишь для прикрепления и питания мужского гаметофита; настоящая пыльцеваятрубка хвойпых и гнетовых растет вертикально и служит главным образом для проведения спермиев кяйцеклеткам, т. е. является проводником (вектором), а не только присоской. Хотя обычно оба этиобразования называют пыльцевыми трубками, но морфологически и функционально они очень различны.
Редуцированные мужские гаметофиты голосеменных достигают своего полного развития намегаспорангии, паразитируя на нем. В этом отношении они резко отличаются от мужских гаметофитов всехразноспоровых бессеменных растений. Мужские гаметофиты голосеменных уже полностью лишеныантеридиев. С другой стороны, для них характерно наличие так называемых клеток-ножек, илидислокаторов, являющихся сестринскими клетками мужских гамет. Дислокаторы представляют собой, какпредполагают, стерильные сперматогенные клетки. Их разрушение ведет к освобождению мужских гамет припрорастании гаметофитов.
Наконец, следует отметить характерное для голосеменных (за исключением вельвичии, гнетума исеквойи вечнозеленой) нуклеарное (ядерное) дробление зиготы. В этом отношении они отличаются не толькоот низших групп, но и от покрытосеменных, для которых (за исключением лишь рода пион) характерноклеточное дробление зиготы.
1. Размножение базидиальных грибов. Половое спороношение - базидиоспоры - экзогенные, сидящие на особых выростах мицелия - базидиях. Такая базидия закладывается из двуядерных клеток. Половые органы у базидиальных грибов не образуются. Половой процесс осуществляется путем слияния двух вегетативных клеток гаплоидного мицелия, вырастающего из базидиоспор. Базидиальные грибы преимущественно гетероталличные. При слиянии мицелия (соматогамия) происходит плазмогамия, а ядра объединяются в пары - дикарионы, которые затем синхронно делятся. Такой дикариотичный мицелий может существовать длительное время, пронизывая субстрат: почву, древесину, стебли и листья. У микоризных грибов мицелий многолетний. На концах дикариотичных гиф из двуядерных клеток образуются базидии. По своему развитию базидии напоминают сумку и гомологичны ей. В базидии завершается половой процесс: сливаются ядра дикариона, редукционно делится диплоидное ядро. На базидии формируются 2-4 базидиоспоры, куда и переходят гаплоидные ядра из базидии. У большинства видов дикариотичный мицелий имеет пряжки - особые клеточки, находящиеся у поперечной перегородки клеток мицелия. Пряжка гомологична крючку аскогенной гифы и выполняет ту же функцию; восстанавливает двуядерность клетки, от которой отделилась материнская клетка базидии. Базидия образуется следующим образом. У перегородки, отделяющей апикалькальную клетку дикариотичной гифы, начинает формироваться пряжка в виде небольшого бокового выроста. Вскоре после этого одновременно делятся пара ядер дикариона, в результате в клетке образуется 4 ядра. Сама клетка также делится и одна пара не сестринских ядер остается в верхней материнской клетке базидии. В дальнейшем эти ядра сливаются и диплоидное ядро редукционно делится. Сама клетка обычно вытягивается, образуя базидию. На ее вершине формируются выросты- стеригмы, которые вздуваясь на конце, развиваются в базидиоспоры. Из оставшейся пары ядер: одно остается в нижней клетке, а второе попадает в пряжку, еще не отделенное от материнской клетки базидии. Пряжка соединяется с ниже лежащей клеткой, ядро из пряжки переходит в клетку - дикарион восстановился. Таким образом, в цикле развития базидиальных грибов преобладает дикариотичная фаза. Гаплоидная фаза короткая: это базидиоспоры и мицелий, выросший из них и существующий небольшой период. Диплоидная фаза - самая короткая, молодая базидия. Плодовые тела сложены из дикариотичного мицелия. Конидиальное спороношение (бесполое размножение) встречается редко.Базидия может быть одноклеточной цилиндрической или булавовидной - холобазидия. Базидия может состоять из двух частей: нижней расширенной - гипобазидии и верхней - эпибазидии, являющейся выростом гипобазидии. Эпибазидия часто состоит из 2-4 частей и отделена от гипобазидии перегородкой. Такая базидия - гетеробазидия. Третий тип базидии - базидия разделенная поперечными перегородками на 4 клетки, по бокам которых формируются базидиоспоры - фрагмобазидия. Особенность фрагмобазидии состоит в том, что она обычно образуется из толстостенной, покоящейся клетке телиоспоры и ее называют еще телиобазидией.
Базидиальные грибы, базидиомицеты (Basidiomycetes) (от греч. basidion — фундамент и mykes — гриб), класс высших грибов, имеющих особые органы размножения — базидии. Типичная зрелая базидия имеет 4 одноклеточные споры (базидиоспоры), расположенные на особых выростах — стеригмах. При прорастании каждая базидио-спора даёт септированный первичный — гаплоидный мицелий, или грибницу. Затем у большинства Базидиальные грибы происходит слияние клеток одной и той же или различных (гетероталлизм) грибниц. На диплоидной грибнице обычно развиваются плодовые тела (у ржавчинных и головнёвых грибов — спороношения). Далее в базидиях (у головнёвых и ржавчинных грибов в спорах) происходит мейоз, заканчивающийся образованием б. ч. 4 ядер, переходящих в развившиеся к этому времени базидиоспоры.
2. Растения-хищники.
презентация
1. Внешнее и внутреннее строение лишайников.
Вегетативное тело лишайника — таллом, или слоевище, очень разнообразно по форме и окраске. Лишайники окрашены в самые различные цвета: белый, розовый, ярко-желтый, оранжевый, оранжево-красный, серый, голубовато-серый, серовато-зеленый, желтовато-зеленый, оливково-коричневый, коричневый, черный и некоторые другие. Окраска слоевища лишайников зависит от наличия пигментов, которые откладываются в оболочках гиф, реже в протоплазме. Наиболее богаты пигментами гифы корового слоя лишайников и различные части их плодовых тел. У лишайников различают пять групп пигментов: зеленые, синие, фиолетовые, красные, коричневые. Механизм образования их до сих пор не выяснен, но совершенно очевидно, что важнейшим фактором, влияющим на этот процесс, является свет.
Иногда цвет слоевища зависит от окраски лишайниковых кислот, которые откладываются в виде кристаллов или зернышек на поверхности гиф. Большинство лишайниковых кислот бесцветны, но некоторые из них окрашены, и иногда очень ярко – в желтый, оранжевый, красный и другие цвета. Окраска кристаллов этих веществ определяет и окраску всего слоевища. И здесь важнейшим фактором, способствующим образованию лишайниковых веществ, является свет. Чем ярче освещение в месте произрастания лишайника, тем ярче он окрашен. Как правило, очень ярко окрашены лишайники высокогорий и полярных районов Арктики и Антарктики. Это тоже связано с условиями освещения. Для высокогорных и полярных районов земного шара характерны большая прозрачность атмосферы и высокая интенсивность прямой солнечной радиации, обеспечивающие здесь значительную яркость освещения. В таких условиях в наружных слоях слоевищ концентрируется большое количество пигментов и лишайниковых кислот, обусловливая яркую окраску лишайников. Предполагают, что окрашенные наружные слои защищают нижележащие клетки водорослей от чрезмерной интенсивности освещения.
Из-за низкой температуры осадки выпадают в Антарктике только в виде снега. В такой форме они не могут быть использованы растениями. Вот здесь-то темная окраска лишайников и приходит им на помощь.
Темноокрашенные слоевища антарктических лишайников за счет высокой солнечной радиации быстро нагреваются до положительной температуры даже при отрицательной температуре воздуха. Снег, падающий на эти нагретые слоевища, тает, превращаясь в воду, которую лишайник сразу же впитывает. Таким образом он обеспечивает себя водой, необходимой для осуществления процессов дыхания и фотосинтеза.
Насколько разнообразны слоевища лишайников по окраске, настолько же разнообразны они и по форме. Слоевище может иметь вид корочки, листовидной пластинки или кустика. В зависимости от внешнего облика различают три основных морфологических типа:
На́кипные. Таллом накипных лишайников — это корочка («накипь»), нижняя поверхность плотно срастается с субстратом и не отделяется без значительных повреждений. Это позволяет им жить на крутых склонах гор, деревьях и даже на бетонных стенах. Иногда накипный лишайник развивается внутри субстрата и снаружи совершенно не заметен. Как правило, накипные слоевища небольших размеров, их диаметр составляет всего несколько миллиметров или сантиметров, но иногда может достигать и 20 – 30 см. В природе нередко можно наблюдать, как небольшие по размерам накипные слоевища лишайников, сливаясь друг с другом, образуют на каменистой поверхности скал или стволах деревьев крупные пятна, достигающие в диаметре нескольких десятков сантиметров.
Листоватые. Листоватые лишайники имеют вид пластин разной формы и размера. Они более или менее плотно прикрепляются к субстрату при помощи выростов нижнего коркового слоя. Наиболее простое слоевище листоватых лишайников имеет вид одной крупной округлой листовидной пластинки, достигающей в диаметре 10 – 20 см. Такая пластинка нередко бывает плотной, кожистой, окрашенной в темно серый, темно-коричневый или черный цвет.
Кустистые. По организационному уровню кустистые лишайники представляют высший этап развития слоевища. У кустистых лишайников таллом образует множество округлых или плоских веточек. Растут на земле или свисают с деревьев, древесных остатков, скал. Слоевище кустистых лишайников имеет вид прямостоячего или повисающего кустика, реже неразветвленных прямостоячих выростов. Это позволяет кустистым лишайникам путем изгибов веточек в разные стороны занимать наилучшее положение, при котором водоросли могут максимально использовать свет для осуществления фотосинтеза. Слоевища кустистых лишайников могут быть разных размеров. Высота самых маленьких составляет всего несколько миллиметров, а наиболее крупных 30 – 50 см. Повисающие слоевища кустистых лишайников иногда могут достигать колоссальных размеров.
Внутреннее строение лишайника: коровый слой, гонидиальный слой, сердцевина, нижняя кора, ризоиды. Тело лишайников (таллом) представляет собой переплетение грибных гиф, между которыми находится популяция фотобионта.
Рис.
2. Анатомическое строение слоевища
лишайников
1 - гетеромерное слоевище (а - верхний коровой слой, б - слой водорослей, в - сердцевина, г - нижний коровой слой); 2 - гомеомерное слоевище слизистого лишайника коллема (Collema flaccidum); 3 - гомеомерное слоевище слизистого лишайника лептогиум (Leptogium saturninum) (а - коровой слой с верхней и нижней стороны слоевища, б - ризоиды)
Каждый из перечисленных анатомических слоев слоевища выполняет в жизни лишайника определенную функцию и в зависимости от этого имеет совершенно определенное строение.
Коровой слой играет в жизни лишайника очень важную роль. Он выполняет сразу две функции: защитную и укрепляющую. Он защищает внутренние слои слоевища от воздействия внешней среды, прежде всего водоросли от чрезмерного освещения. Поэтому коровой слой лишайников обычно бывает плотного строения и окрашен в сероватый, коричневый, оливковый, желтый, оранжевый или красноватый цвет. Коровой слой служит и для укрепления слоевища. Чем выше слоевище поднимается над субстратом, тем более оно нуждается в укреплении. Укрепляющие механические функции в таких случаях нередко выполняет толстый коровой слой. На нижнем коровом слое лишайников обычно образуются органы прикрепления. Иногда они имеют вид очень тонких нитей, состоящих из одного ряда клеток. Эти нити называют ризоидами. Каждая такая нить берет начало от одной клетки нижнего корового слоя. Нередко несколько ризоидов соединяются в толстые ризоидальные тяжи.
В зоне водорослей осуществляются процессы ассимиляции углекислоты и накопление органических веществ. Как известно, для осуществления процессов фотосинтеза водорослям не обходим солнечный свет. Поэтому слой водорослей обычно размещается вблизи верхней поверхности слоевища, непосредственно под верхним коровым слоем, а у вертикально стоящих кустистых лишайников еще и над нижним коровым слоем. Слой водорослей чаще всего бывает небольшой толщины, и водоросли размещаются в нем так, что находятся почти в одинаковых условиях освещения. Водоросли в слоевище лишайника могут образовывать непрерывный слой, но иногда гифы микобионта делят его на отдельные участки. Для осуществления процессов ассимиляции углекислоты и дыхания водорослям необходим также нормальный газообмен. Поэтому грибные гифы в зоне водорослей не образуют плотных сплетений, а расположены рыхло на некотором расстоянии друг от друга.
Под слоем водорослей расположен сердцевинный слой. Обычно сердцевина по толщине значительно превышает коровой слой и зону водорослей. От степени развития сердцевины зависит толщина самого слоевища. Основная функция сердцевинного слоя – проведение воздуха к клеткам водорослей, содержащим хлорофилл. Поэтому для большинства лишайников характерно рыхлое расположение гиф в сердцевине. Воздух, попадающий в слоевище, легко проникает к водорослям по промежуткам между гифами. Сердцевинные гифы слабоветвисты, с редкими поперечными перегородками, с гладкими, слабожелатинообразными толстыми стенками и довольно узким просветом, заполненным протоплазмой. У большинства лишайников сердцевина белая, так как гифы сердцевинного слоя бесцветны.
Как и в случае двухкомпонентных лишайников, водорослевый компонент — фикобионт — трёхкомпонентных лишайников равномерно распределен по таллому, либо образует слой под верхней корой. Некоторые трёхкомпонентные цианолишайники образуют специализированные поверхностные или внутренние компактные структуры (цефалодии), в которых сосредоточен цианобактериальный компонент.
2. Типы плодов.
По стилю образования различают плоды: настоящие, образованные только из одного пестика; ложные, в образование кроме пестика участвует цветоложе и околоцветник; сборные – формируется из нескольких пестиков одного цветка. По строению плоды делятся на сухие и сочные. Классификация сухих плодов Сухие плоды непосредственно делятся на нераскрывающиеся и раскрывающиеся. Нераскрывающиеся плоды содержат одно семя, а раскрывающиеся – два и больше. Сухие, нераскрывающиеся или односемянные, плоды непосредственно делятся на следующие типы плодов: зерновка, семянка, крылатка и орех или орешек. Сухие, раскрывающиеся или многосемянные, плоды в частности, делятся на следующие типы плодов: листовка, боб, стручок, коробочка. Классификация сочных плодов Сочные плоды также как и сухие делятся на следующие виды односемянные и многосемянные. К сочным односемянным плодам относят: костянку и многокостянку. К сочным многосемянным плодам относят: ягоду, соплодие и ягодоподобные. Различают ягодоподобные плоды: яблоко, тыквина и померанец.
1. Размножение лишайников.
Лишайники размножаются либо спорами, которые образует микобионт половым или бесполым путем, либо вегетативно – фрагментами слоевища, соредиями и изидиями.
При половом размножении на слоевищах лишайников в результате полового процесса формируются половые спороношения в виде плодовых тел. Среди плодовых тел у лишайников различают апотеции, перитеции и гастеротеции. Большинство лишайников формируют открытые плодовые тела в виде апотециев – дисковидных образований. Некоторые имеют плодовые тела в форме перитеция – закрытого плодового тела, имеющего вид маленького кувшина с отверстием наверху. Небольшое количество лишайников образуют узкие плодовые тела удлиненной формы, которые называют гастеротециями.
В апотециях, перитециях и гастеротециях споры развиваются внутри сумок – особых мешковидных образований. Лишайники, формирующие споры в сумках, объединяются в большую группу сумчатых лишайников. Они произошли от грибов класса аскомицетов и представляют основную эволюционную линию развития лишайников.
У небольшой группы лишайников споры образуются не внутри сумок, а экзогенно, на вершине удлиненно-булавовидных гиф – базидий, на концах которых развиваются четыре споры. Лишайники с таким образованием спор объединяются в группу базидиальных лишайников.
Женский половой орган лишайников – архикарп – состоит из двух частей. Нижняя часть носит название аскогона и представляет собой спирально закрученную гифу, более толстую по сравнению с другими гифами и состоящую из 10 – 12 одно- или много ядерных клеток. От аскогона вверх отходит трихогина – тоненькая вытянутая гифа, которая проходит через зону водорослей и коровой слой и выходит на поверхность слоевища, возвышаясь над ней своей липкой верхушкой.
Развитие и созревание плодового тела у лишайников – очень медленный процесс, который длится 4 – 10 лет. Сформировавшееся плодовое тело тоже является многолетним, способным в течение ряда лет продуцировать споры. Сколько же спор способны продуцировать плодовые тела лишайников? Подсчитано, например, что у лишайника солорина в апотеции диаметром 5 мм образуется 31 тыс. сумок, а в каждой сумке обычно развивается по 4 споры. Следовательно, общее количество спор, продуцируемое одним апотецием, равно 124 000. В течение одного дня из такого апотеция выбрасывается от 1200 до 1700 спор. Конечно, не все выброшенные из плодового тела споры прорастают. Многие из них, попав в неблагоприятные условия, погибают. Для прорастания споры необходимы прежде всего достаточная влажность и определенная температура.
У лишайников известны также бесполые спороношения – конидии, пикноконидии и стилоспоры, возникающие экзогенно на поверхности конидиеносцев. При этом конидии образуются на конидиеносцах, развивающихся непосредственно на поверхности слоевища, а пикноконидии и стилоспоры в особых вместилищах – пикнидиях.
Из бесполых спороношений лишайники чаще всего формируют пикнидии с пикноконидиями. Пикнидии нередко встречаются на слоевищах многих кустистых и листоватых лишайников, реже их можно наблюдать у накипных форм.
В каждом из пикнидиев образуются в огромном количестве маленькие одноклеточные споры – пикноконидии. Роль этих столь широко распространенных спороношений в жизни лишайника до сих пор не выяснена. Одни ученые, называя эти споры спермациями, а пикнидии – спермагониями, считают их мужскими половыми клетками, хотя до сих пор нет ни экспериментальных, ни цитологических данных, доказывающих, что пикноконидии действительно участвуют в половом процессе лишайников.
Вегетативное размножение. Если накипные лишайники, как правило, образуют плодовые тела, то среди более высокоорганизованных листоватых и кустистых лишайников имеется немало представителей, которые размножаются исключительно вегетативным путем. В этом случае более важны для размножения лишайников такие образования, в которых одновременно присутствуют гифы гриба и клетки водоросли. Это соредии и изидии. Они служат для размножения лишайника как целого организма. Попав в благоприятные условия, они дают начало непосредственно новому таллому. Соредии и изидии встречаются чаще у листоватых и кустистых лишайников.
Соредии представляют собой мельчайшие образования в виде пылинок, состоящих из одной или нескольких клеток водоросли, окруженных гифами гриба. Формирование их обычно начинается в гонидиальном слое. Вследствие массового образования соредий количество их увеличивается, они давят на верхнюю кору, разрывают ее и оказываются на поверхности таллома, откуда легко сдуваются при любом движении воздуха или смываются водой. Скопления соредий называют соралями. Наличие и отсутствие соредий и соралей, их расположение, форма и окраска постоянны для определенных лишайников и служат определительным признаком.
Иногда при отмирании лишайников их таллом превращается в порошковатую массу, состоящую из соредий. Это так называемые лепрозные формы лишайников (от греческого слова «лепрос» — «шероховатый», «неровный»). В этом случае определить лишайник почти не представляется возможным.
Соредии, разносимые ветром и дождевой водой, попав в благоприятные условия, постепенно образуют новый таллом. Возобновление нового таллома из соредии происходит очень медленно. Так, у видов из рода кладония нормальные чешуйки первичного таллома развиваются из соредии только через срок от 9 до 24 месяцев. А для развития вторичного таллома с апотециями требуется от одного до восьми лет в зависимости от вида лишайника и внешних условий.
Изидии встречаются у меньшего числа видов лишайников, нежели соредии и сорали. Они представляют собой простые или коралловидно разветвленные выросты, обычно густо покрывающие верхнюю сторону таллома (см. рисунок). В отличие от соралей изидии снаружи покрыты корой, часто более темной, чем таллом. Внутри, под корой, они содержат водоросли и грибные гифы. Изидии легко отламываются от поверхности таллома. Обламываясь и распространяясь с помощью дождя и ветра, они, так же как и соредии, могут при благоприятных условиях образовывать новые талломы лишайников.
Многие лишайники не образуют апотециев, соредии и изидии и размножаются участками таллома, которые легко отламываются от хрупких в сухую погоду лишайников ветром или животными и ими же переносятся. Особенно широко распространено размножение лишайников участками таллома в арктических областях, представители родов цетрария и кладония, многие из которых почти никогда не образуют плодовых тел.
Лишайник является единым организмом, имеющим в составе одноклеточные водоросли и гриб. Данный симбиоз исключительно полезен для существования всего организма в целом. Ведь пока гриб поглощает воду и с растворенными минеральными солями, водоросль производит органические вещества из углекислого газа и воды в процессе фотосинтеза под действием солнечного света. Лишайник – неприхотливый организм. Это дает лишайникам возможность селиться первыми в местах, где нет никакой другой растительности. После них появляется перегной, на котором могут жить и другие растения.
Лишайники, встречающиеся в природе, чрезвычайно разнообразны по внешнему виду и окраске. На старых елях часто можно увидеть висящие взлохмаченные бороды лишайников, которые называются вислянка, или бородач. А на коре некоторых деревьев, в частности, осины, иногда прикреплены оранжевые пластинки округлой формы лишайника стенной золотянки. Олений лишайник представляет собой сероватые белесые небольшие кустики. Это растение произрастает в сухих сосновых лесах, а в сухую погоду издает характерный хруст, если по нему пройтись.
Лишайники широко распространены. Они неприхотливы, поэтому обитают в различных, подчас суровых условиях. Лишайники можно встретить на голых скалах и камнях, на коре деревьев, на заборах, иногда даже на почве. В северных регионах, а конкретнее, в тундре лишайники заселяют огромные площади, к примеру, олений лишайник. Также часто можно встретить лишайники в горах.
2. Способы распространения семян покрытосеменных растений.
Половое размножение у семенных растений, к которым относятся цветковые и голосеменные, осуществляется с помощью семян. При этом обычно бывает важно, чтобы семена оказались на достаточно удаленном расстоянии от родительского растения. В этом случае больше шансов, что молодым растения не придется конкурировать за свет и воду как между собой, так и со взрослым растением.
Покрытосеменные (они же цветковые) растения в процессе эволюции растительного мира решили проблему распространения семян наиболее успешно. Они «изобрели» такой орган как плод.
Плоды служат приспособлением к определенному способу распространения семян. По-сути, чаще всего распространяются плоды, а семена вместе с ними. Поскольку способов распространения плодов достаточно много, то существует множество разновидностей плодов. Основными способами распространения плодов и семян являются следующие:
с помощью ветра,
животными (в том числе птицами и человеком),
саморазбрасыванием,
с помощью воды.
Плоды растений, которые распространяются ветром, имеют специальные приспособления, увеличивающие их площадь, но не увеличивающие их массу. Это различные пушистые волоски (например, плоды тополя и одуванчика) или крыловидные выросты (как у плодов клена). Благодаря таким образованиям, семена долго парят в воздухе, а ветер их относит всё дальше и дальше от родительского растения.
В степи и полупустыне нередко растения засыхают, и ветер обламывает их у корня. Перекатываемые ветром, засохшие растения рассыпают по местности свои семена. Таким «перекати-поле» растениям, можно сказать, не нужны даже плоды для распространения семян, так как с помощью ветра их распространяет само растение.
С помощью воды распространяются семена водных и околоводных растений. Плоды таких растений не тонут, а уносятся течением (например, у ольхи, растущей по берегам). Причем это не обязательно мелкие плоды. У кокосовой пальмы они крупные, но легкие, поэтому не тонут.
Приспособления плодов растений к распространению животными более разнообразные. Ведь животные, птицы и человек могут по-разному распространять плоды и семена.
Плоды некоторых покрытосеменных приспособлены к тому, чтобы цепляться за шерсть животных. Если, например, животное или человек пройдет рядом с репейником, то за него зацепится несколько колючих плодов. Рано или поздно животное их сбросит, но семена репейника окажутся уже относительно далеко от исходного места. Кроме репейника, примером растения с плодами-зацепками является череда. Ее плоды относятся к типу семянки. Однако у этих семянок есть маленькие шипы, покрытые зубчиками.
Сочные плоды позволяют растениям распространять их семена с помощью животных и птиц, которые поедают эти плоды. Но как же они их распространяют, если плод и семена вместе с ним съедены и переварены животным? Дело в том, что переваривается в основном сочная часть околоплодника плода, а вот семена — нет. Они выходят из пищеварительного тракта животного. Семена оказываются далеко от родительского растения и окружены пометом, который, как известно, неплохое удобрение. Поэтому сочный плод можно считать одним из самых успешных достижений эволюции живой природы.
Существенную роль в распространении семян сыграл человек. Так плоды и семена многих растений были случайно или намеренно завезены на другие континенты, где они смогли прижиться. В результате сейчас мы можем, например, наблюдать как в Америке растут растения, характерные для Африки, а в Африке — растения, родина которых Америка.
Существует вариант распространения семян с помощью разбрасывания, а точнее саморазбрасывания. Конечно, это не самых эффективный метод, так как семена оказываются всё-равно близко к материнскому растению. Однако такой способ нередко наблюдается в природе. Обычно разбрасывание семян характерно для плодов типа стручок, боб и коробочка. Когда боб или стручок засыхает, его створки скручиваются в разные стороны, и плод растрескивается. Из него с небольшой силой вылетают семена. Так распространяют свои семена горох, акация и другие бобовые.
Плод коробочка (например, у мака) колышется на ветру, и их него высыпаются семена.
Однако саморазбрасывание характерно не только для сухих семян. Например, у растения под названием бешеный огурец семена вылетают их сочного плода. В нем скапливается слизь, которая под давлением выбрасывается вместе с семенами.
Если среди них есть шишки сосны или ели, аккуратно откройте чешуйки шишки. Внутри прячется маленькое семечко-крылатка. Подбросьте его вверх – семечко, кружась, полетит к земле. Сосновые и еловые семена путешествуют по воздуху . Попробуйте вспомнить, какие еще растения отправляют своих детей «в полет»? (Клен, липа, береза, одуванчик, бодяк)
Если вам попались ягоды, извлеките из мякоти семена. Они тоже путешествуют, но совершенно другим способом. Семена рябины переносят свиристели, дрозды и снегири. Ягода – приманка для птицы, но сами семечки птицы не переваривают. Вместе с птичьим пометом семечко окажется на новом месте. Какие еще растения пользуются птичьей любовью к вкусненькому? (Зимой – боярышник, калина, черноплодная рябина. Летом — вишня, клубника, малина)
Кстати, при помощи птиц и белок ищет себе новое место для жительства и дуб. Плоды дуба – желуди – с удовольствием запасают на зиму сойки и белки . Только вот вспоминают про свои запасы не всегда – сойка, к примеру, прячет до ста желудей за сезон, а находит – не больше половины. Остальные желуди взойдут весной на новом месте. (В лесу таким же образом «путешествует» лещина – лесной орех).
Есть у растений и еще один способ передвижения, в котором ему помогают как животные, так и человек. Не попалось ли вам торчащих из снега соцветий подорожника? Есть предание, что в Америке индейцы называли это растение «следом белого человека». Почему? Оказывается, семена подорожника – липкие, они пристают к подошвам обуви . На подошвах семена перебрались через Атлантический океан, где и взошли по обочинам тропинок и дорог, по которым путешествовали переселенцы из Европы. Кстати, русское название подорожника тоже намекает нам на этот хитрый способ перемещения.
Но таким образом путешествует не только подорожник – за одежду и шерсть животных крошечными «крючками» цепляются репешок и череда, прилипает к подошвам полынь. Дети точно могут вспомнить растение, которому сами оказали помощь, играя его цепкими шариками – это лопух со своим плодом–репейником, который так хорошо виснет на куртках и рубашках.
В нашем климате мы не найдем растений, которые используют для перемещения водные пути сообщения. Но есть и такие растения, которые активно их используют. В Ботаническом Петербурга хранится один экспонат: огромное семя. Его нашли в 1921 году на берегу Ледовитого океана. Семена такого размера не растут в суровом северном климате, поэтому находку передали Ботаническому музею. Здесь семя определили — оно оказалось гигантским семенем тропического растения энтады, «слоновой лианы». Наиболее интересная особенность этих твёрдых семян с толстым прочным покровом - их большая плавучесть, семена энтады могут плавать в морской воде и не тонуть в течение целого года. Морские течения разносят эти нетонущие семена по всем тропическим странам. Одно из таких семян и приплыло к побережью Ледовитого океана. Можно попытаться проложить по карте его маршрут! От берегов тропической Америки через весь Атлантический океан до берегов северной Европы проходит громадное течение Гольфстрим. Семя, очевидно, начало своё путешествие где-нибудь на берегу Антильских островов, попало в Мексиканского залива, там его подхватил Гольфстрим и понес мимо полуострова Флориды к северу, а дальше — через Атлантический океан. Проплыв между Исландией и Норвегией к европейским берегам, семя попало в холодное Баренцево море. Тут-то в непогоду его и выкинуло на песок. Таким же образом умеют путешествовать кокосовые орехи.
У вас остались семена, которые вы рассматривали. Если у вас есть возможность – попробуйте посадить их! Горшок лучше всего накрыть полиэтиленовым пакетом, создав таким образом маленький «парник». Можно подписать горшки и провести настоящую научную работу – пронаблюдать, какие семена взойдут первыми, каких всходов окажется больше.
растительного мира предусмотрела не только развитие и приспособленность к окружающей среде растений, но и выработала приспособление к эффективному распространению семян. Распространение семян и плодов необходимо растениям для того, чтобы они не конкурировали за ресурсы.
Например, если отросток появляется под материнским растением то, скорее всего, он погибает из-за недостатка солнечного света, или малоразвит.
Разнообразное строение плодов предоставляет различные способы распространения. Распространение осуществляется при помощи антропогенных, биотических и абиотических факторов. Исходя из этого, существует четыре способа распространения плодов и семян:
Животные и человек;
Ветер;
Вода;
Самораспространение.
Многие плоды способны распространятся несколькими из способов.
Распространение плодов и семян животными
Считается что животный способ распространение семян самый эффективный, поскольку человек и животные способны относить достаточно далеко от материнского места растения. Человек распространяет множество видов растений на все материки света.
Известно четыре варианта распространения семян.
Одним из вариантов - распространяются сухие плоды . С помощью мелких крючочков, зацепок, колючек, семена крепятся к шерсти животных и попадают на одежду человека. Таким образом, семена мигрируют вместе с животными и человеком. Семена растений, оказавшись на новом месте и при благоприятных условиях, прорастают. Например, череда, подмаренник, лопух, верблюжья колючка и другие цепкие растения.
Второй вариант распространения осуществляется сочными плодами . Животные, поедая сочные плоды, не перерабатывают семена плодов, и таким образом семена оказываются на другом месте. На пример растения образующие сочные съедобные плоды, ягоды, яблоки, вишни, рябина, бузина и др.
Третий вариант существует благодаря запасам плодов грызунов . Забытые или потерявшиеся не съеденные плоды грызунов распространяются. Например, орехи, желуди, злаковые растения.
Четвертый вариант присущ человеку . Переезжая на дальние расстояния человек, перевозит большие грузы и вместе с ними случайно перевозятся семена и мелкие плоды растений с одного континента на другой. Так же человек может специально перевести на свою родину плод или семя растений для дальнейшего его выращивания. Так в Европу, например, были завезены с других материков картофель и табак. Примеров такого распространения очень много.
Распространение плодов и семян ветром
Семена и плоды приспособлены к полету благодаря их легкости. От этой способности зависит расстояние полета семени или плода. Кроме их массы расстояние преодолевается при помощи летательных образований, которые увеличивают площадь плода. От большого объема поверхности плода и его маленькой массы, зависит его легкость полета.
Летательные образования представлены летучками и крылатками. К летучкам относят плоды с пушистыми образованиями или парашютики. Например, тополь, ива, хлопчатник, одуванчик и др. крылатки имеют пленчатые выросты, они достаточны большие, что с легкостью осуществляется полет плода. Плоды-крылатки характерны для деревьев, например, клен, береза, ясень.
Распространение плодов и семян водой
Водой распространяются соответсвенно водные растения, а также те растения, которые растут над водой вдоль берегов. Плод приспособлен к плавучести при помощи образования воздушных полостей внутри него. Например, в волокнистой части кокоса находится много воздуха, поэтому кокосы не тонут и достигают соседних островов. Губчатым плодом окружены семена кувшинок, что не дает им утонуть. Так же при помощи воды распространяются осока, ольха.
Самораспространение семян плодами
Такой способ характерен для раскрывающихся сухих плодов, при созревании они сами обеспечивают разброс семян. В некоторых случаях семена выталкиваются с силой. Так ветром, от созревшей коробочки, которая вскрывается и колышется, рассыпая семена, распространяются растения, например, фиалки, мак. Именно коробочка приспособлена для самораспространения, а ветер играет лишь второстепенную роль.
Распространения растений имеющих плод боб осуществляется при помощи его созревания, высыхания, скручивания и, в конечном итоге, растрескивания по шву, что способствует разбрасывания семян. Так распространяются акация, люпин, бешенный огурец, недотрога
1. Патогенные грибы.
Грибы представляют собой отдельное царство животного мира. Они имеют множество форм: съедобные, ядовитые, плесень, дрожжи и многие другие. Современной науке известно больше пятисот видов грибов. Эти создания встречаются повсюду на нашей планете, даже внутри человека. Некоторые из них хорошо уживаются с людьми и составляют условно-патогенную микрофлору. Патогенный гриб обязательно вызывает заболевание. Он потворствует своей природе и стремится отвоевать себе место под солнцем, а также ресурсы для дальнейшего роста и развития. К сожалению, это вредит здоровью человека. Определение Патогенные грибы – это возбудители глубоких и поверхностных микозов у человека и животных. Эти создания относятся в основном к классу дерматофитов, то есть питающихся кожей. Реже среди них встречаются низшие грибы и актиномицеты. У них существует определенная тропность к тканям животных. Это значит, что дерматофиты предпочитают эпидермис с волосистую часть кожи, дрожжи – лимфатическую систему, кандиды – паренхиматозные органы, аспергиллы живут в дыхательной системе, а актиномицеты обожают селиться в костях. Зная эти особенности врач может дифференцировать заболевания и назначать специфическое лечение. В царстве грибов патогенные грибы делятся на два отдела: слизевики и настоящие грибы. Последний разбирается на семь классов, названия которых отражают присущие им стадии развития: - цитридомицеты; - гипоцитридомицеты; - оомицеты; - зигомицеты; - аскомицеты; - базидомицеты; - дейтеромицеты. Первые четыре представителя формируют группу низших грибов, остальные относятся к высшим, а последний класс - к несовершенным грибам. Большинство патогенных грибов, вызывающих заболевание у людей, относятся к дейтеромицетам. Свойства патогенных грибов Человек обычно сразу не замечает, что в его организм попали патогенные грибы. Споры (семена грибов) удлиняются и принимают вид трубки, которая продолжает расти и истончаться, чтобы со временем превратиться в гифу и стать основой грибницы. Уже на этом этапе заметно отличие. Гифа высших грибов имеет перегородки, а низших – нет.. Клетки грибов покрыты стенкой из углеводов, но веществом, по которому можно определить видовую принадлежность, остается хитин. Он не взаимодействует с пенициллинами и лизоцимом, поэтому обладает большей вирулентностью для человеческого организма. Патогенный гриб устойчив к физическим и химическим дезинфектантам. Лечение от них способно нанести непоправимый вред органам и системам человека, так как требуется высокая концентрация препаратов в жидкостях организма. Наиболее чувствительны к терапии микроспоры, а наименее – кандиды. Подбор препаратов усложняется тем, что у одного вида грибов возможны различные комбинации антигенов, а токсины, ферменты и другие факторы патогенности до сих пор остаются неизвестными. Особенности инфекции у человека Грибы, патогенные для человека, способны вызвать заболевания, которые можно разделить по локализации на четыре группы: Глубокие микозы – это поражение паренхиматозные органов, сепсис, диссеминация спор из очага заболевания в соседние ткани. Подкожные микозы, они же субкутанные. Грибы заселяют эпидермис, дерму, подкожно-жировую клетчатку, фасции и даже кости. Эпидермомикозы или дерматомикозы возникают на производных верхнего слоя кожи: волосах и ногтях. Поверхностные микозы (кератомикозы). Патогенные грибы на коже поражают только роговой слой и волосы. Отдельной группой выделяют заболевания, возбудителями которых являются условно-патогенные грибы. Это оппортунистические заболевания, которые появляются, когда иммунная защита организма ослабляется, например ВИЧ, гепатит В или С, онкологическое заболевание. Чаще всего возбудители микозов находятся в почве или пыли, поэтому важно работать в респираторах, мыть овощи и зелень, проводить влажную уборку в помещениях. Глубокие микозы появляются после вдыхания возбудителя, а для развития кожных заболеваний необходимо, чтобы споры попали на раневую поверхность.
2. Строение цветка.
Цветок — это орган полового размножения у покрытосеменных растений. Цветок является видоизмененным побегом. Он развивается из цветковой (генеративной) почки.
Разные виды покрытосеменных растений могут сильно отличаться между собой по строению своих цветков. Однако общая схема строения цветков растений во многом сходна.
Цветок развивается на тонком стебельке, который называется цветоножкой. У цветков некоторых растений цветоножки нет, в таком случае цветки называются сидячими.
Строение
цветка
Цветоножка вверху переходит в цветоложе, которое обычно представляет собой утолщение стебелька. Обычно цветоложе имеет зеленый цвет. Из цветоложа растут остальные части цветка.
У многих цветков есть маленькие зеленые листочки — чашелистики. Все вместе они образуют чашечку.
Ярко-окрашенные части цветка — это лепестки. Все вместе они образуют венчик. Главная их функция — привлечение опылителей (обычно насекомых). Те растения, которые опыляются ветром, обычно в строении цветка не имеют ярко-окрашенных венчиков.
Чашечку и венчик вместе называют околоцветником.
Главными частями цветков являются тычинки и пестики.
Тычинки — это мужские части цветка, в них созревает пыльца. Каждая тычинка состоит из тычиночной нити и пыльника. Пыльник состоит из двух половинок, в каждой из которых находится по два пыльцевых мешка. В пыльцевых мешках созревает пыльца.
В строении пестика у большинства растений выделяют завязь, столбик и рыльце. Столбик и рыльце служат для улавливания пыльцы. В завязи находится семяпочка. После опыления (попадания пыльцы на рыльце) семяпочка оплодотворяется спермиями из пыльцы и из нее развивается семя. Завязь превращается в плод.
Не у всех видов растений цветки имеют и тычинки, и пестики одновременно. У многих видов цветки могут отличаться по строению: одни быть мужскими (содержать только тычинки), а другие — женскими (с пестиками). Когда цветок содержит тычинки и пестики, он называется обоеполым. Если же только тычинки, или только пестики — то однополым.
Кроме того, если у вида растения цветки однополые, то мужские и женские цветки могут расти на одном растении, или на разных. В первом случае растение называется однодомным, а во втором — двудомным.
Следует отметить, что у насекомоопыляемых растений в строении цветка также есть нектарники, которые выделяют сладкую жидкость. Она привлекает насекомых-опылителей, которые, посещая цветки, пачкаются в пыльце и переносят ее с одного растения на другое
1. Общая характеристика водорослей.
Водоросли – это низш ие полуводные или водные растения, которые обитают в океанах, озерах, ручьях и прудах, или на увлажненных участках суши. Они образуют вместе с животными океанский планктон и являются главным источником питания рыб.
Одни водоросли огромны и сложны по строению, а другие – являются одноклеточными организмами, которые в диаметре не более 0,01 мм. Некоторые из морских видов водорослей достигают 100 м в длину.
Водоросли являются довольно пестрой группой растений, которые классифицируются по таким характеристикам, как состав клеточных оболочек и пигментация.
У всех клеток водорослей есть хроматофоры, которые содержат различные пигменты. Зеленый хлорофилл – важнейший из них, он присутствует в хроматофорах, именуемых хлоропластами. У разных водорослей количество и форма хлоропластов различны.
Например, у хлореллы один-единственный хлоропласт, похожий на чашечку. У спирогиры многочисленные хлоропласты, которые соединены в длинные спиральные ленты. А у других водорослей они в форме звездочек или блюдечек.
Свой диапазон пигментов в особой комбинации присущ каждой группе водорослей. Благодаря этому существуют группы сине-зеленых, бурых, красных и зеленых водорослей. Некоторые из видов образуют лишайники в симбиозе с грибами.
Одноклеточные водоросли вроде хлореллы состоят всего из одной клетки, где внутри оболочки находится носитель генетического материала – ДНК (нуклеус) – и хлоропласты содержащие хлорофилл.
Передвигаться некоторые одноклеточные водоросли могут с помощью жгутиков. Многоклеточные водоросли состоят из множества нитей, которые образуют разные по форме слоевища, это хорошо видно на примере морских водорослей.
2. Видоизменения корня.
У корней растений есть две основные функции: 1) закрепление растения в почве, 2) поглощение воды и растворенных в ней минеральных веществ. Однако нередко корни растений выполняют ряд дополнительных функций, в результате чего видоизменяются, т. е. в природе имеют место видоизменения корней.
Ниже перечислены наиболее известные видоизменения корней.
Корнеплоды
Корнеплод — это видоизменение главного корня и нижней части стебля, в которых накапливаются запасные питательные вещества (крахмал, сахара и др.). Корнеплоды характерны для таких растений как свекла и морковь, а также ряда других.
Чаще всего корнеплоды встречаются у двулетних растений. Они образуются в конце первого вегетационного периода такого растения, обычно в конце лета или начале осени. Растение за лето накапливает запасные питательные вещества, осенью ее надземная часть отмирает. На второй год весной стебли и листья снова отрастают. При этом используются запасные вещества из корнеплода. В этот год растение цветет и плодоносит, после чего отмирает полностью.
Корнеплоды многих растений человек использует для своего питания. Урожай собирают в первый год. Если надо получить семена, то корнеплод оставляют в почве на второй год.
Корневые клубни
Корневые клубни — это видоизменения придаточных и боковых корней, в которых накапливаются запасные питательные вещества. Клубни характерны для таких растений как батат, георгины и ряд других.
Корневые клубни по-другому называют корневыми шишками.
Корни-прицепки
Корни-прицепки (или корни-зацепки) — это видоизменения придаточных корней, служащие растению для прикрепления к какой-либо опоре. Эти корни находятся над почвой. Так растение выносит свои вегетативные части (стебель и листья) к свету при отсутствии прочного стебля. Корни-прицепки можно наблюдать у плюща.
Корни-подпорки
Корни-подпорки, или опорные корни, также развиваются из придаточных корней и находятся в воздушной среде. Они образуются у ряда тропических деревьев на стволах и ветвях. Далее они растут до почвы. У ее поверхности они сильно ветвятся и как бы подпирают растение. Пример растения с корнями-подпорками — это баньян.
Воздушные корни
Воздушные корни характерны для орхидей, которые растут на вервях тропических деревьев. Здесь корни орхидей просто свисают вниз. В тропических лесах очень влажно, так что воду можно впитывать прямо из воздуха.
Корни-присоски
Корни-присоски характерны для растений-паразитов. С помощью таких корней растение внедряется в органы других растений и поглощает оттуда воду, минеральные и органические вещества. Такими растениями-паразитами являются повилика и заразиха.
Корни-присоски также можно наблюдать у омелы, погремка, ивана-да-марьи. Они всасывают только воду и минеральные вещества.
1. Строение и цикл развития представителей отдела Зеленые водоросли на примере улотрикса.
Улотрикс - зеленая водоросль, является одной из самых древних растений в мире. Ее можно встретить на водоемах и влажных поверхностях. По виду она напоминает рясу или тину, которые покрывают твердые поверхности.
Многоклеточная улотрикс
Водоросли имеют прямую, не разветвленную форму. Практически все клетки в нити улотрикса однородные, только нижняя клетка немного больше, чем остальные. Это связано с тем, что нижняя часть водоросли отвечает за прикрепление к поверхности.
В этой клетке нет хлорофилла. Все клетки многоклеточной улотрикс способны делится. По внешнему виду клетки напоминают бочонки, чья ширина больше, чем длина. Хроматофор клеток выглядит, как пояс, расположенный по середине клетке. Отсюда и второе название улотрикс – опоясанная.