
- •1. История развития геохимии. Место геохимии среди других геологических наук. Разделы геохимии.
- •2. Распространенность элементов и распределение элементов в природе
- •3. Строение атомов химических элементов.
- •4. Радиоактивность. Закон радиоактивного распада. Типы распада ядер.
- •5. Периодический закон и его значение для геохимии.
- •6. Классификация химических элементов s-, p -, d- элементы, металлы и неметаллы.
- •Происхождение химического элемента — гелия
- •Химическая эволюция звёзд и галактик
- •8. Стадии жизни звезд Первый жизненный цикл звезды: Молекулярные облака
- •Второй жизненный цикл звезды: Протозвезда
- •Третий жизненный цикл звезды: т Тельца
- •Четвертый жизненный цикл звезды: Главная последовательность
- •Пятый жизненный цикл звезды: Красный гигант
- •Шестой жизненный цикл звезды: Белый карлик
- •9. Физические характеристики, состав, строение планет земной группы
- •10. Физические характеристики, состав, строение Юпитера, Сатурна, Плутона
- •11. Физические характеристики, состав астероидов
- •12. Особенности классификации химических элементов в. М. Гольдшмидта,
- •13. Особенности классификации химических элементов в. И. Вернадского,
- •14. Особенности классификации химических элементов а. И. Перельмана.
- •15. Виды и типы миграции химических элементов. Основные факторы миграции элементов (внутренние и внешние).
- •17. Подвижность элементов в зависимости от окислительно-восстановительных условий среды.
- •Окислительно-восстановительные режимы почв
- •20. Свойства и состав воды.
- •21. Формы миграции химических элементов в воде: ионная, молекулярная, суспензионная, коллоидная, с живыми и отмершими организмами.
- •23. Основные факторы формирования химического состава природных вод суши (поверхностные и грунтовые воды).
- •25. Оценка водной миграции химических элементов. С использованием коэффициента водной миграции. Группировка химических элементов по величине коэффициента.
- •28. Источники и химический состав примесей в атмосфере: пары воды, пыль, аэроионы, аэрозоли, фитонциды, эфирно-масличные соединения.
- •29. Техногенные примеси в атмосфере. Самоочищение атмосферы.
- •33. Общие черты геохимии гумидных и семигумидных ландшафтов (влажные тропики, ши роколиственные леса, таежные ландшафты, лесостепные ландшафты).
- •34. Общие черты геохимии степных и пустынных ландшафтов (степные и сухостепные ландшафты, прерии, пустынные ландшафты).
- •35. Оценка техногенной миграции химических элементов. Коэффициенты технофильности и деструкционной активности техногенеза.
- •44. Геохимия ландшафта и сельское хозяйство. Методика исследования агроландшафтов с использованием ландшафтно-геохимического метода. Круговорот и баланс химических элементов в агроландшафтах.
3. Строение атомов химических элементов.
Атом - частица в-ва. Состоит из протонов, нейтронов, электронов.
Электрон является самой лёгкой из составляющих атом частиц с массой 9,11·10−31 кг, отрицательным зарядом и размером, слишком малым для измерения современными методами. Протоны обладают положительным зарядом и в 1836 раз тяжелее электрона (1,6726·10−27 кг). Нейтроны не обладают электрическим зарядом и в 1839 раз тяжелее электрона (1,6929·10−27 кг). При этом масса ядра меньше суммы масс составляющих его протонов и нейтронов из-за эффекта дефекта массы. Нейтроны и протоны имеют сравнимый размер, около 2,5·10−15 м, хотя размеры этих частиц определены плохо.
Атом - частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и электронов. Хотя слово атом в первоначальном значении обозначало частицу, которая не делится на меньшие части, согласно научным представлениям он состоит из более мелких частиц, называемых субатомными частицами. Атом состоит из электронов, протонов, все атомы, кроме водорода-1, содержат также нейтроны. Электрон является самой лёгкой из составляющих атом частиц с массой 9,11·10−31 кг, отрицательным зарядом и размером, слишком малым для измерения современными методами.Протоны обладают положительным зарядом и в 1836 раз тяжелее электрона (1,6726·10−27 кг). Нейтроны не обладают электрическим зарядом и в 1839 раз тяжелее электрона (1,6929·10−27 кг).При этом масса ядра меньше суммы масс составляющих его протонов и нейтронов из-за эффекта дефекта массы. Нейтроны и протоны имеют сравнимый размер, около 2,5·10−15 м, хотя размеры этих частиц определены плохо. В стандартной модели элементарных частиц как протоны, так и нейтроны состоят из элементарных частиц, называемых кварками. Наряду с лептонами, кварки являются одной из основных составляющих материи. И первые и вторые являются фермионами. Существует шесть типов кварков, каждый из которых имеет дробный электрический заряд, равный +2⁄3 или −1⁄3 элементарного. Протоны состоят из двух u-кварков и одного d-кварка, а нейтрон — из одного u-кварка и двух d-кварков. Это различие объясняет разницу в массах и зарядах протона и нейтрона. Кварки связаны между собой сильными ядерными взаимодействиями, которые передаются глюонами.
4. Радиоактивность. Закон радиоактивного распада. Типы распада ядер.
Радиоактивность – способность некоторых атомных ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием различных частиц:
1)Естественная - наблюдается у неустойчивых изотопов, существующих в природе;
2)Искусственная - наблюдается у изотопов, синтезированных посредством ядерных реакций в лабораторных условиях.
Закон радиоактивного распада
Радиоактивный распад - естественное превращение ядер, происходящее самопроизвольно.
Это явление статистическое, поэтому выводы, следующие из законов радиоактивного распада, имеют вероятностный характер.
Постоянная радиоактивного распада - вероятность распада ядра за единицу времени, равная доле ядер, распадающихся за 1 с.
Закон радиоактивного распада: В силу самопроизвольности радиоактивного распада можно считать, что число ядер dN, распавшихся в среднем за интервал времени от t до t+dt, пропорционально промежутку времени dt и числу N ядер, не распавшихся к моменту времени t
. Альфа - распад Альфа-частицы испускаются только тяжелыми ядрами, т.е. содержащими большое число протонов и нейтронов. Прочность тяжелых ядер мала. Для того, чтобы покинуть ядро, нуклон должен преодолеть ядерные силы, а для этого он должен обладать достаточной энергией. При объединении двух протонов и двух нейтронов в альфа-частицу ядерные силы в подобном сочетании (между нуклонами частицы) являются наиболее крепкими, а связи с другими нуклонами слабее, поэтому альфа-частица способна "выйти" из ядра. Вылетевшая альфа-частица уносит положительный заряд в 2 единицы и массу в 4 единицы. В результате альфа-распада радиоактивный элемент превращается в другой элемент, порядковый номер которого на 2 единицы, а массовое число на 4 единицы, меньше. То ядро, которое распадается, называют материнским, а образовавшееся дочерним. Дочернее ядро оказывается обычно тоже радиоактивным и через некоторое время распадается. Процесс радиоактивного распада происходит до тех пор, пока не появится стабильное ядро, чаще всего ядро свинца или висмута. Бета-распад Явление бета-распада состоит в том, что ядра некоторых элементов самопроизвольно испускают электроны и элементарную частицу очень малой массы - антинейтрино. Так как электронов в ядрах нет, то появление бета-лучей из ядра атома можно объяснить способностью нейтронов ядра распадаться на протон, электрон и антинейтрино. Появившийся протон переходит во вновь образующееся ядро. Электрон, вылетающий из ядра, и является частицей бета-излучения. Такой процесс распада нейтронов характерен для ядер с большим количеством нейтронов. В результате бета-распада образуется новое ядро с таким же массовым числом, но с большим на единицу зарядом. Гамма - распад - не существует В процессе радиоактивного излучения ядра атомов могут испускать гамма-кванты. Испускание гамма-квантов не сопровождается распадом ядра атома. Гамма излучение зачастую сопровождает явления альфа- или бета-распада. При альфа- и бета-распаде новое возникшее ядро первоначально находится в возбужденном состоянии и , когда оно переходит в нормальное состояние, то испускает гамма-кванты (в оптическом или рентгеновском диапазоне волн). Так как радиоактивное излучение состоит из альфа-частиц, бета-частиц и гамма-квантов (т.е. ядер атома гелия, электронов и гамма-квантов), то явление радиоактивности сопровождается потерей массы и энергии ядра, атома и вещества в целом. Доказательством того, что радиоактивное излучение несет энергию, является опыт, показывающий, что при поглощении радиоактивного излучения вещество нагревается.