
- •1. История развития геохимии. Место геохимии среди других геологических наук. Разделы геохимии.
- •2. Распространенность элементов и распределение элементов в природе
- •3. Строение атомов химических элементов.
- •4. Радиоактивность. Закон радиоактивного распада. Типы распада ядер.
- •5. Периодический закон и его значение для геохимии.
- •6. Классификация химических элементов s-, p -, d- элементы, металлы и неметаллы.
- •Происхождение химического элемента — гелия
- •Химическая эволюция звёзд и галактик
- •8. Стадии жизни звезд Первый жизненный цикл звезды: Молекулярные облака
- •Второй жизненный цикл звезды: Протозвезда
- •Третий жизненный цикл звезды: т Тельца
- •Четвертый жизненный цикл звезды: Главная последовательность
- •Пятый жизненный цикл звезды: Красный гигант
- •Шестой жизненный цикл звезды: Белый карлик
- •9. Физические характеристики, состав, строение планет земной группы
- •10. Физические характеристики, состав, строение Юпитера, Сатурна, Плутона
- •11. Физические характеристики, состав астероидов
- •12. Особенности классификации химических элементов в. М. Гольдшмидта,
- •13. Особенности классификации химических элементов в. И. Вернадского,
- •14. Особенности классификации химических элементов а. И. Перельмана.
- •15. Виды и типы миграции химических элементов. Основные факторы миграции элементов (внутренние и внешние).
- •17. Подвижность элементов в зависимости от окислительно-восстановительных условий среды.
- •Окислительно-восстановительные режимы почв
- •20. Свойства и состав воды.
- •21. Формы миграции химических элементов в воде: ионная, молекулярная, суспензионная, коллоидная, с живыми и отмершими организмами.
- •23. Основные факторы формирования химического состава природных вод суши (поверхностные и грунтовые воды).
- •25. Оценка водной миграции химических элементов. С использованием коэффициента водной миграции. Группировка химических элементов по величине коэффициента.
- •28. Источники и химический состав примесей в атмосфере: пары воды, пыль, аэроионы, аэрозоли, фитонциды, эфирно-масличные соединения.
- •29. Техногенные примеси в атмосфере. Самоочищение атмосферы.
- •33. Общие черты геохимии гумидных и семигумидных ландшафтов (влажные тропики, ши роколиственные леса, таежные ландшафты, лесостепные ландшафты).
- •34. Общие черты геохимии степных и пустынных ландшафтов (степные и сухостепные ландшафты, прерии, пустынные ландшафты).
- •35. Оценка техногенной миграции химических элементов. Коэффициенты технофильности и деструкционной активности техногенеза.
- •44. Геохимия ландшафта и сельское хозяйство. Методика исследования агроландшафтов с использованием ландшафтно-геохимического метода. Круговорот и баланс химических элементов в агроландшафтах.
20. Свойства и состав воды.
Вода - бинарное неорганическое соединение
Изотопный состав воды: изотоп – атом с одинаковым кол-вом протонов и разным кол-вом нейтронов
- протий
- дейтерий
- тритий
Строение, связь, молекулы воды, её свойства:
- связь внутри молекул воды ковалентная полярная (между кислородом и водородом)
- электронная плотность смещена к кислороду
- на водороде появляется условный положительный заряд
- у кислорода есть неподелённая электронная пара, из-за этого образуется избыток отрицательного заряда
Состав воды зависит от происхождения природных вод, растворимости и состава пород содержащих воду
Вода - бинарное неорганическое соединение, химическая формула Н2O. Молекула воды состоит из двух атомов водорода и одного — кислорода, которые соединены между собой ковалентной связью. При нормальных условиях представляет собой прозрачную жидкость, не имеет цвета (в малом объёме), запаха и вкуса. В твёрдом состоянии называется льдом, снегом или инеем, а в газообразном — водяным паром. Вода также может существовать в виде жидких кристаллов (на гидрофильных поверхностях). Около 71 % поверхности Земли покрыто водой. На Земле примерно 96,5 % воды приходится на океаны, 1,7 % мировых запасов составляют грунтовые воды, ещё 1,7 % на ледники и ледяные шапки Антарктиды и Гренландии, небольшая часть в реках, озёрах и болотах, и 0,001 % в облаках. В состав молекулы воды входят два атома водорода и один атом кислорода, атомы связаны ковалентной полярной связью. В 1872 году было обнаружено, что фильтрование воды через слой песка является хорошим способом её очистки и делает её относительно безопасной для питья.
21. Формы миграции химических элементов в воде: ионная, молекулярная, суспензионная, коллоидная, с живыми и отмершими организмами.
В природных водах химические элементы и их соединения мигрируют в ионной, коллоидной, взвешенной (суспензии органических и неорганических веществ, органо-минерального происхождения), газообразной формы, а также с живыми организмами (растения, животные, бактерии). Для природных вод характерна ионная форма миграции химических элементов. Ионы могут быть простыми (К+), сложными (SO42-) и комплексными [Cu(CO3)2]2-. Комплекс состоит из центрального атома (иона) и радикалов (адденд, лиганда). Некоторые органические радикалов, соединяясь с ионом металла, образуют хелатные комплексы. Хелаты сравнительно устойчивы в водных растворах, распад некоторых из них в воде повышает их миграцию. Комплексные ионы могут диссоциировать на более простые. С хелатами и коллоидами тесно связан очень распространенный процесс в ландшафте – сорбция (поглощение). Она участвует почти во всех химических и биохимических процессах и происходит на границе двух сред (твердая поверхность – вода, вода – газы). Сорбция лежит в основе питания организмов, обоняния человека и животных, воздействия химических на микробы. Коллоидная форма миграции элементов характерна для поверхностных и грунтовых вод в рыхлых породах. Коллоидная частица с сорбированными на ее поверхности ионами называется мицеллой. Мицеллы по происхождению бывают минеральные (глины), органические (гумус), органо-минеральные (соли гумусовых кислот). Миграция вещества во взвешенном состоянии характерна для поверхностных вод. Суспензия влияет на оптические и акустические свойства воды, цвет и прозрачность. Количество взвешенного материала зависит от скорости перемещения воды и наличия в окружающих ландшафтах дисперсионного материала. Газообразная форма миграции представлена растворенными газами: кислород, углекислый газ, водород, метан, азот и др. поступление газов в воду осуществляется путем диффузии, при дыхании водных организмов, фотосинтезе водорослей, извержении подводных вулканов.
В природных водах химические элементы и их соединения мигрируют в ионной, коллоидной, взвешенной (суспензии органических и неорганических веществ, органо-минерального происхождения), газообразной формы, а также с живыми организмами (растения, животные, бактерии). Для природных вод характерна ионная форма миграции химических элементов. Ионы могут быть простыми (К+), сложными (SO42-) и комплексными [Cu(CO3)2]2-. Комплекс состоит из центрального атома (иона) и радикалов (адденд, лиганда). Некоторые органические радикалов, соединяясь с ионом металла, образуют хелатные комплексы. Хелаты сравнительно устойчивы в водных растворах, распад некоторых из них в воде повышает их миграцию. Комплексные ионы могут диссоциировать на более простые. С хелатами и коллоидами тесно связан очень распространенный процесс в ландшафте – сорбция (поглощение). Она участвует почти во всех химических и биохимических процессах и происходит на границе двух сред (твердая поверхность – вода, вода – газы). Сорбция лежит в основе питания организмов, обоняния человека и животных, воздействия химических на микробы. Коллоидная форма миграции элементов характерна для поверхностных и грунтовых вод в рыхлых породах. Коллоидная частица с сорбированными на ее поверхности ионами называется мицеллой. Мицеллы по происхождению бывают минеральные (глины), органические (гумус), органо-минеральные (соли гумусовых кислот). Миграция вещества во взвешенном состоянии характерна для поверхностных вод. Суспензия влияет на оптические и акустические свойства воды, цвет и прозрачность. Количество взвешенного материала зависит от скорости перемещения воды и наличия в окружающих ландшафтах дисперсионного материала. Газообразная форма миграции представлена растворенными газами: кислород, углекислый газ, водород, метан, азот и др. поступление газов в воду осуществляется путем диффузии, при дыхании водных организмов, фотосинтезе водорослей, извержении подводных вулканов
22. Особенности химического состава атмосферных осадков. Атмосферные осадки - вода в жидком или твёрдом состоянии, выпадающая из облаков или осаждающаяся из воздуха на земную поверхность и какие-либо предметы. Химический состав атмосферных осадков в значительной степени формирует состав подземных вод, определяет активность карстового процесса. Химический состав атмосферных осадков зависит от многих, пока еще недостаточно изученных факторов: почвенного покрова ближайших районов; близости моря и промышленных центров; количества выпадающих осадков; времени года и других обстоятельств. Важное геохимическое значение имеет близость моря. Так, по А.А.Колодяжной, на Черноморском побережье ежегодно с осадками выпадает 60 т солей на 1 кв. км, большая часть которых имеет морское происхождение. В атмосферных осадках морских побережий содержание Cl- может превышать 100 мг/л (во внутриконтинентальных районах 2-3 мг/л). Однако уже на расстоянии нескольких десятков километров от берега содержание морских солей в атмосферных осадках резко снижается до 1-3 мг/л. Отмечаются следующие закономерности распределения атмосферных осадков. Наиболее часто осадки выпадают над океаном. Над континентами степень минерализации осадков определяется климатическим фактором. Максимальная минерализация осадков характерна для ландшафтов пустынь. Техногенные процессы усиливают минерализацию осадков над крупными промышленными центрами и изменяют свойства атмосферной воды. В каждой ландшафтной зоне минерализация атмосферных осадков зависит от времен года: зимой, весной и во влажный летний период минерализация осадков ниже, чем в сухой.
Атмосферные осадки - вода в жидком или твёрдом состоянии, выпадающая из облаков или осаждающаяся из воздуха на земную поверхность и какие-либо предметы. Химический состав атмосферных осадков в значительной степени формирует состав подземных вод, определяет активность карстового процесса. Химический состав атмосферных осадков зависит от многих, пока еще недостаточно изученных факторов: почвенного покрова ближайших районов; близости моря и промышленных центров; количества выпадающих осадков; времени года и других обстоятельств. Важное геохимическое значение имеет близость моря. Так, по А.А.Колодяжной, на Черноморском побережье ежегодно с осадками выпадает 60 т солей на 1 кв. км, большая часть которых имеет морское происхождение. В атмосферных осадках морских побережий содержание Cl- может превышать 100 мг/л (во внутриконтинентальных районах 2-3 мг/л). Однако уже на расстоянии нескольких десятков километров от берега содержание морских солей в атмосферных осадках резко снижается до 1-3 мг/л. Отмечаются следующие закономерности распределения атмосферных осадков. Наиболее часто осадки выпадают над океаном. Над континентами степень минерализации осадков определяется климатическим фактором. Максимальная минерализация осадков характерна для ландшафтов пустынь. Техногенные процессы усиливают минерализацию осадков над крупными промышленными центрами и изменяют свойства атмосферной воды. В каждой ландшафтной зоне минерализация атмосферных осадков зависит от времен года: зимой, весной и во влажный летний период минерализация осадков ниже, чем в сухой.
В атмосферных осадках преобладают: НСО3-, SO42-, Cl-, Ca2+, Mg2+, Na+. Они поступают в осадки за счет растворения газов воздуха, приноса ветром солей с моря, растворения солей и пыли континентального происхождения, вулканических эксгаляций и других источников. Общее количество растворенных веществ, как правило, не превышает 100 мг/л, часто оно меньше 50 мг/л. Это ультрапресные воды, но местами минерализация осадков повышается до 500 мг/л и более. рН дождевой воды обычно 5-7. Дождевая вода содержит также некоторое количество перекиси водорода.
В результате физического испарения солей, а также разбрызгивания морской воды при волнении в зоне прибоя и последующего испарения капель воды морской воздух обогащен элементами морской воды, а ветры, дующие с моря, приносят на сушу морские соли. Большая часть Cl, Li, Na, Rв, Cs, B, I в речных водах имеет, вероятно, морское происхождение. Это так называемые "циклические соли", которые на сушу попадают с атмосферными осадками и затем со стоком снова поступают в океан. По В.Д. Корж и В.С. Саенко, в среднем до 15 % солей речного стока привнесены в реки из океана через атмосферу.
В атмосферных осадках морских побережий содержание Cl - может превышать 100 мг/л (во внутриконтинентальных районах 2-3 мг/л). Однако уже на расстоянии нескольких десятков километров от берега содержание морских солей в атмосферных осадках резко снижается до 1-3 мг/л.
В атмосферных осадках внутриконтинентальных районов преобладают не Cl - и Na+, а - SO42-, Ca2+. В гумидных внутриконтинентальных областях минерализация осадков низкая, около 20-30 мг/л, в них преобладают ионы НСО3 - и Ca2+ континентального происхождения.