- •Contents
- •Preface
- •An Experiment
- •Acknowledgments
- •Versions of this Book
- •About This Book
- •What You Should Know Before Reading This Book
- •Overall Structure of the Book
- •The Way I Implement
- •Initializations
- •Error Terminology
- •The C++ Standards
- •Example Code and Additional Information
- •1 Comparisons and Operator <=>
- •1.1.1 Defining Comparison Operators Before C++20
- •1.1.2 Defining Comparison Operators Since C++20
- •1.2 Defining and Using Comparisons
- •1.2.2 Comparison Category Types
- •1.2.4 Calling Operator <=> Directly
- •1.2.5 Dealing with Multiple Ordering Criteria
- •1.3 Defining operator<=> and operator==
- •1.3.1 Defaulted operator== and operator<=>
- •1.3.2 Defaulted operator<=> Implies Defaulted operator==
- •1.3.3 Implementation of the Defaulted operator<=>
- •1.4 Overload Resolution with Rewritten Expressions
- •1.5 Using Operator <=> in Generic Code
- •1.5.1 compare_three_way
- •1.6 Compatibility Issues with the Comparison Operators
- •1.6.2 Inheritance with Protected Members
- •1.7 Afternotes
- •2 Placeholder Types for Function Parameters
- •2.1.1 auto for Parameters of Member Functions
- •2.2 Using auto for Parameters in Practice
- •2.3.1 Basic Constraints for auto Parameters
- •2.4 Afternotes
- •3.1 Motivating Example of Concepts and Requirements
- •3.1.1 Improving the Template Step by Step
- •3.1.2 A Complete Example with Concepts
- •3.2 Where Constraints and Concepts Can Be Used
- •3.2.1 Constraining Alias Templates
- •3.2.2 Constraining Variable Templates
- •3.2.3 Constraining Member Functions
- •3.3 Typical Applications of Concepts and Constraints in Practice
- •3.3.1 Using Concepts to Understand Code and Error Messages
- •3.3.2 Using Concepts to Disable Generic Code
- •3.3.3 Using Requirements to Call Different Functions
- •3.3.4 The Example as a Whole
- •3.3.5 Former Workarounds
- •3.4 Semantic Constraints
- •3.4.1 Examples of Semantic Constraints
- •3.5 Design Guidelines for Concepts
- •3.5.1 Concepts Should Group Requirements
- •3.5.2 Define Concepts with Care
- •3.5.3 Concepts versus Type Traits and Boolean Expressions
- •3.6 Afternotes
- •4.1 Constraints
- •4.2.1 Using && and || in requires Clauses
- •4.3 Ad-hoc Boolean Expressions
- •4.4.1 Simple Requirements
- •4.4.2 Type Requirements
- •4.4.3 Compound Requirements
- •4.4.4 Nested Requirements
- •4.5 Concepts in Detail
- •4.5.1 Defining Concepts
- •4.5.2 Special Abilities of Concepts
- •4.5.3 Concepts for Non-Type Template Parameters
- •4.6 Using Concepts as Type Constraints
- •4.7 Subsuming Constraints with Concepts
- •4.7.1 Indirect Subsumptions
- •4.7.2 Defining Commutative Concepts
- •5 Standard Concepts in Detail
- •5.1 Overview of All Standard Concepts
- •5.1.1 Header Files and Namespaces
- •5.1.2 Standard Concepts Subsume
- •5.2 Language-Related Concepts
- •5.2.1 Arithmetic Concepts
- •5.2.2 Object Concepts
- •5.2.3 Concepts for Relationships between Types
- •5.2.4 Comparison Concepts
- •5.3 Concepts for Iterators and Ranges
- •5.3.1 Concepts for Ranges and Views
- •5.3.2 Concepts for Pointer-Like Objects
- •5.3.3 Concepts for Iterators
- •5.3.4 Iterator Concepts for Algorithms
- •5.4 Concepts for Callables
- •5.4.1 Basic Concepts for Callables
- •5.4.2 Concepts for Callables Used by Iterators
- •5.5 Auxiliary Concepts
- •5.5.1 Concepts for Specific Type Attributes
- •5.5.2 Concepts for Incrementable Types
- •6 Ranges and Views
- •6.1 A Tour of Ranges and Views Using Examples
- •6.1.1 Passing Containers to Algorithms as Ranges
- •6.1.2 Constraints and Utilities for Ranges
- •6.1.3 Views
- •6.1.4 Sentinels
- •6.1.5 Range Definitions with Sentinels and Counts
- •6.1.6 Projections
- •6.1.7 Utilities for Implementing Code for Ranges
- •6.1.8 Limitations and Drawbacks of Ranges
- •6.2 Borrowed Iterators and Ranges
- •6.2.1 Borrowed Iterators
- •6.2.2 Borrowed Ranges
- •6.3 Using Views
- •6.3.1 Views on Ranges
- •6.3.2 Lazy Evaluation
- •6.3.3 Caching in Views
- •6.3.4 Performance Issues with Filters
- •6.4 Views on Ranges That Are Destroyed or Modified
- •6.4.1 Lifetime Dependencies Between Views and Their Ranges
- •6.4.2 Views with Write Access
- •6.4.3 Views on Ranges That Change
- •6.4.4 Copying Views Might Change Behavior
- •6.5 Views and const
- •6.5.1 Generic Code for Both Containers and Views
- •6.5.3 Bringing Back Deep Constness to Views
- •6.6 Summary of All Container Idioms Broken By Views
- •6.7 Afternotes
- •7 Utilities for Ranges and Views
- •7.1 Key Utilities for Using Ranges as Views
- •7.1.1 std::views::all()
- •7.1.2 std::views::counted()
- •7.1.3 std::views::common()
- •7.2 New Iterator Categories
- •7.3 New Iterator and Sentinel Types
- •7.3.1 std::counted_iterator
- •7.3.2 std::common_iterator
- •7.3.3 std::default_sentinel
- •7.3.4 std::unreachable_sentinel
- •7.3.5 std::move_sentinel
- •7.4 New Functions for Dealing with Ranges
- •7.4.1 Functions for Dealing with the Elements of Ranges (and Arrays)
- •7.4.2 Functions for Dealing with Iterators
- •7.4.3 Functions for Swapping and Moving Elements/Values
- •7.4.4 Functions for Comparisons of Values
- •7.5 New Type Functions/Utilities for Dealing with Ranges
- •7.5.1 Generic Types of Ranges
- •7.5.2 Generic Types of Iterators
- •7.5.3 New Functional Types
- •7.5.4 Other New Types for Dealing with Iterators
- •7.6 Range Algorithms
- •7.6.1 Benefits and Restrictions for Range Algorithms
- •7.6.2 Algorithm Overview
- •8 View Types in Detail
- •8.1 Overview of All Views
- •8.1.1 Overview of Wrapping and Generating Views
- •8.1.2 Overview of Adapting Views
- •8.2 Base Class and Namespace of Views
- •8.2.1 Base Class for Views
- •8.2.2 Why Range Adaptors/Factories Have Their Own Namespace
- •8.3 Source Views to External Elements
- •8.3.1 Subrange
- •8.3.2 Ref View
- •8.3.3 Owning View
- •8.3.4 Common View
- •8.4 Generating Views
- •8.4.1 Iota View
- •8.4.2 Single View
- •8.4.3 Empty View
- •8.4.4 IStream View
- •8.4.5 String View
- •8.4.6 Span
- •8.5 Filtering Views
- •8.5.1 Take View
- •8.5.2 Take-While View
- •8.5.3 Drop View
- •8.5.4 Drop-While View
- •8.5.5 Filter View
- •8.6 Transforming Views
- •8.6.1 Transform View
- •8.6.2 Elements View
- •8.6.3 Keys and Values View
- •8.7 Mutating Views
- •8.7.1 Reverse View
- •8.8 Views for Multiple Ranges
- •8.8.1 Split and Lazy-Split View
- •8.8.2 Join View
- •9 Spans
- •9.1 Using Spans
- •9.1.1 Fixed and Dynamic Extent
- •9.1.2 Example Using a Span with a Dynamic Extent
- •9.1.4 Example Using a Span with Fixed Extent
- •9.1.5 Fixed vs. Dynamic Extent
- •9.2 Spans Considered Harmful
- •9.3 Design Aspects of Spans
- •9.3.1 Lifetime Dependencies of Spans
- •9.3.2 Performance of Spans
- •9.3.3 const Correctness of Spans
- •9.3.4 Using Spans as Parameters in Generic Code
- •9.4 Span Operations
- •9.4.1 Span Operations and Member Types Overview
- •9.4.2 Constructors
- •9.5 Afternotes
- •10 Formatted Output
- •10.1 Formatted Output by Example
- •10.1.1 Using std::format()
- •10.1.2 Using std::format_to_n()
- •10.1.3 Using std::format_to()
- •10.1.4 Using std::formatted_size()
- •10.2 Performance of the Formatting Library
- •10.2.1 Using std::vformat() and vformat_to()
- •10.3 Formatted Output in Detail
- •10.3.1 General Format of Format Strings
- •10.3.2 Standard Format Specifiers
- •10.3.3 Width, Precision, and Fill Characters
- •10.3.4 Format/Type Specifiers
- •10.4 Internationalization
- •10.5 Error Handling
- •10.6 User-Defined Formatted Output
- •10.6.1 Basic Formatter API
- •10.6.2 Improved Parsing
- •10.6.3 Using Standard Formatters for User-Defined Formatters
- •10.6.4 Using Standard Formatters for Strings
- •10.7 Afternotes
- •11 Dates and Timezones for <chrono>
- •11.1 Overview by Example
- •11.1.1 Scheduling a Meeting on the 5th of Every Month
- •11.1.2 Scheduling a Meeting on the Last Day of Every Month
- •11.1.3 Scheduling a Meeting Every First Monday
- •11.1.4 Using Different Timezones
- •11.2 Basic Chrono Concepts and Terminology
- •11.3 Basic Chrono Extensions with C++20
- •11.3.1 Duration Types
- •11.3.2 Clocks
- •11.3.3 Timepoint Types
- •11.3.4 Calendrical Types
- •11.3.5 Time Type hh_mm_ss
- •11.3.6 Hours Utilities
- •11.4 I/O with Chrono Types
- •11.4.1 Default Output Formats
- •11.4.2 Formatted Output
- •11.4.3 Locale-Dependent Output
- •11.4.4 Formatted Input
- •11.5 Using the Chrono Extensions in Practice
- •11.5.1 Invalid Dates
- •11.5.2 Dealing with months and years
- •11.5.3 Parsing Timepoints and Durations
- •11.6 Timezones
- •11.6.1 Characteristics of Timezones
- •11.6.2 The IANA Timezone Database
- •11.6.3 Using Timezones
- •11.6.4 Dealing with Timezone Abbreviations
- •11.6.5 Custom Timezones
- •11.7 Clocks in Detail
- •11.7.1 Clocks with a Specified Epoch
- •11.7.2 The Pseudo Clock local_t
- •11.7.3 Dealing with Leap Seconds
- •11.7.4 Conversions between Clocks
- •11.7.5 Dealing with the File Clock
- •11.8 Other New Chrono Features
- •11.9 Afternotes
- •12 std::jthread and Stop Tokens
- •12.1 Motivation for std::jthread
- •12.1.1 The Problem of std::thread
- •12.1.2 Using std::jthread
- •12.1.3 Stop Tokens and Stop Callbacks
- •12.1.4 Stop Tokens and Condition Variables
- •12.2 Stop Sources and Stop Tokens
- •12.2.1 Stop Sources and Stop Tokens in Detail
- •12.2.2 Using Stop Callbacks
- •12.2.3 Constraints and Guarantees of Stop Tokens
- •12.3.1 Using Stop Tokens with std::jthread
- •12.4 Afternotes
- •13 Concurrency Features
- •13.1 Thread Synchronization with Latches and Barriers
- •13.1.1 Latches
- •13.1.2 Barriers
- •13.2 Semaphores
- •13.2.1 Example of Using Counting Semaphores
- •13.2.2 Example of Using Binary Semaphores
- •13.3 Extensions for Atomic Types
- •13.3.1 Atomic References with std::atomic_ref<>
- •13.3.2 Atomic Shared Pointers
- •13.3.3 Atomic Floating-Point Types
- •13.3.4 Thread Synchronization with Atomic Types
- •13.3.5 Extensions for std::atomic_flag
- •13.4 Synchronized Output Streams
- •13.4.1 Motivation for Synchronized Output Streams
- •13.4.2 Using Synchronized Output Streams
- •13.4.3 Using Synchronized Output Streams for Files
- •13.4.4 Using Synchronized Output Streams as Output Streams
- •13.4.5 Synchronized Output Streams in Practice
- •13.5 Afternotes
- •14 Coroutines
- •14.1 What Are Coroutines?
- •14.2 A First Coroutine Example
- •14.2.1 Defining the Coroutine
- •14.2.2 Using the Coroutine
- •14.2.3 Lifetime Issues with Call-by-Reference
- •14.2.4 Coroutines Calling Coroutines
- •14.2.5 Implementing the Coroutine Interface
- •14.2.6 Bootstrapping Interface, Handle, and Promise
- •14.2.7 Memory Management
- •14.3 Coroutines That Yield or Return Values
- •14.3.1 Using co_yield
- •14.3.2 Using co_return
- •14.4 Coroutine Awaitables and Awaiters
- •14.4.1 Awaiters
- •14.4.2 Standard Awaiters
- •14.4.3 Resuming Sub-Coroutines
- •14.4.4 Passing Values From Suspension Back to the Coroutine
- •14.5 Afternotes
- •15 Coroutines in Detail
- •15.1 Coroutine Constraints
- •15.1.1 Coroutine Lambdas
- •15.2 The Coroutine Frame and the Promises
- •15.2.1 How Coroutine Interfaces, Promises, and Awaitables Interact
- •15.3 Coroutine Promises in Detail
- •15.3.1 Mandatory Promise Operations
- •15.3.2 Promise Operations to Return or Yield Values
- •15.3.3 Optional Promise Operations
- •15.4 Coroutine Handles in Detail
- •15.4.1 std::coroutine_handle<void>
- •15.5 Exceptions in Coroutines
- •15.6 Allocating Memory for the Coroutine Frame
- •15.6.1 How Coroutines Allocate Memory
- •15.6.2 Avoiding Heap Memory Allocation
- •15.6.3 get_return_object_on_allocation_failure()
- •15.7 co_await and Awaiters in Detail
- •15.7.1 Details of the Awaiter Interface
- •15.7.2 Letting co_await Update Running Coroutines
- •15.7.3 Symmetric Transfer with Awaiters for Continuation
- •15.8.1 await_transform()
- •15.8.2 operator co_await()
- •15.9 Concurrent Use of Coroutines
- •15.9.1 co_await Coroutines
- •15.9.2 A Thread Pool for Coroutine Tasks
- •15.9.3 What C++ Libraries Will Provide After C++20
- •15.10 Coroutine Traits
- •16 Modules
- •16.1 Motivation for Modules Using a First Example
- •16.1.1 Implementing and Exporting a Module
- •16.1.2 Compiling Module Units
- •16.1.3 Importing and Using a Module
- •16.1.4 Reachable versus Visible
- •16.1.5 Modules and Namespaces
- •16.2 Modules with Multiple Files
- •16.2.1 Module Units
- •16.2.2 Using Implementation Units
- •16.2.3 Internal Partitions
- •16.2.4 Interface Partitions
- •16.2.5 Summary of Splitting Modules into Different Files
- •16.3 Dealing with Modules in Practice
- •16.3.1 Dealing with Module Files with Different Compilers
- •16.3.2 Dealing with Header Files
- •16.4 Modules in Detail
- •16.4.1 Private Module Fragments
- •16.4.2 Module Declaration and Export in Detail
- •16.4.3 Umbrella Modules
- •16.4.4 Module Import in Detail
- •16.4.5 Reachable versus Visible Symbols in Detail
- •16.5 Afternotes
- •17 Lambda Extensions
- •17.1 Generic Lambdas with Template Parameters
- •17.1.1 Using Template Parameters for Generic Lambdas in Practice
- •17.1.2 Explicit Specification of Lambda Template Parameters
- •17.2 Calling the Default Constructor of Lambdas
- •17.4 consteval Lambdas
- •17.5 Changes for Capturing
- •17.5.1 Capturing this and *this
- •17.5.2 Capturing Structured Bindings
- •17.5.3 Capturing Parameter Packs of Variadic Templates
- •17.5.4 Lambdas as Coroutines
- •17.6 Afternotes
- •18 Compile-Time Computing
- •18.1 Keyword constinit
- •18.1.1 Using constinit in Practice
- •18.1.2 How constinit Solves the Static Initialization Order Fiasco
- •18.2.1 A First consteval Example
- •18.2.2 constexpr versus consteval
- •18.2.3 Using consteval in Practice
- •18.2.4 Compile-Time Value versus Compile-Time Context
- •18.4 std::is_constant_evaluated()
- •18.4.1 std::is_constant_evaluated() in Detail
- •18.5 Using Heap Memory, Vectors, and Strings at Compile Time
- •18.5.1 Using Vectors at Compile Time
- •18.5.2 Returning a Collection at Compile Time
- •18.5.3 Using Strings at Compile Time
- •18.6.1 constexpr Language Extensions
- •18.6.2 constexpr Library Extensions
- •18.7 Afternotes
- •19.1 New Types for Non-Type Template Parameters
- •19.1.1 Floating-Point Values as Non-Type Template Parameters
- •19.1.2 Objects as Non-Type Template Parameters
- •19.2 Afternotes
- •20 New Type Traits
- •20.1 New Type Traits for Type Classification
- •20.1.1 is_bounded_array_v<> and is_unbounded_array_v
- •20.2 New Type Traits for Type Inspection
- •20.2.1 is_nothrow_convertible_v<>
- •20.3 New Type Traits for Type Conversion
- •20.3.1 remove_cvref_t<>
- •20.3.2 unwrap_reference<> and unwrap_ref_decay_t
- •20.3.3 common_reference<>_t
- •20.3.4 type_identity_t<>
- •20.4 New Type Traits for Iterators
- •20.4.1 iter_difference_t<>
- •20.4.2 iter_value_t<>
- •20.4.3 iter_reference_t<> and iter_rvalue_reference_t<>
- •20.5 Type Traits and Functions for Layout Compatibility
- •20.5.1 is_layout_compatible_v<>
- •20.5.2 is_pointer_interconvertible_base_of_v<>
- •20.5.3 is_corresponding_member()
- •20.5.4 is_pointer_interconvertible_with_class()
- •20.6 Afternotes
- •21 Small Improvements for the Core Language
- •21.1 Range-Based for Loop with Initialization
- •21.2 using for Enumeration Values
- •21.3 Delegating Enumeration Types to Different Scopes
- •21.4 New Character Type char8_t
- •21.4.2 Broken Backward Compatibility
- •21.5 Improvements for Aggregates
- •21.5.1 Designated Initializers
- •21.5.2 Aggregate Initialization with Parentheses
- •21.5.3 Definition of Aggregates
- •21.6 New Attributes and Attribute Features
- •21.6.1 Attributes [[likely]] and [[unlikely]]
- •21.6.2 Attribute [[no_unique_address]]
- •21.6.3 Attribute [[nodiscard]] with Parameter
- •21.7 Feature Test Macros
- •21.8 Afternotes
- •22 Small Improvements for Generic Programming
- •22.1 Implicit typename for Type Members of Template Parameters
- •22.1.1 Rules for Implicit typename in Detail
- •22.2 Improvements for Aggregates in Generic Code
- •22.2.1 Class Template Argument Deduction (CTAD) for Aggregates
- •22.3.1 Conditional explicit in the Standard Library
- •22.4 Afternotes
- •23 Small Improvements for the C++ Standard Library
- •23.1 Updates for String Types
- •23.1.1 String Members starts_with() and ends_with()
- •23.1.2 Restricted String Member reserve()
- •23.2 std::source_location
- •23.3 Safe Comparisons of Integral Values and Sizes
- •23.3.1 Safe Comparisons of Integral Values
- •23.3.2 ssize()
- •23.4 Mathematical Constants
- •23.5 Utilities for Dealing with Bits
- •23.5.1 Bit Operations
- •23.5.2 std::bit_cast<>()
- •23.5.3 std::endian
- •23.6 <version>
- •23.7 Extensions for Algorithms
- •23.7.1 Range Support
- •23.7.2 New Algorithms
- •23.7.3 unseq Execution Policy for Algorithms
- •23.8 Afternotes
- •24 Deprecated and Removed Features
- •24.1 Deprecated and Removed Core Language Features
- •24.2 Deprecated and Removed Library Features
- •24.2.1 Deprecated Library Features
- •24.2.2 Removed Library Features
- •24.3 Afternotes
- •Glossary
- •Index
15.3 Coroutine Promises in Detail |
515 |
15.3 Coroutine Promises in Detail
Table Special member functions of coroutine promises lists all operations that are provided for coroutine handles in their promise type.
Operation |
Effect |
Constructor |
Initializes the promise |
get_return_object() |
Defines the object that the coroutine returns |
|
(usually of the coroutine interface type) |
initial_suspend() |
Initial suspend point (to let the coroutine start lazily) |
yield_value(val) |
Deals with a value from co_yield |
unhandled_exception() |
Reaction to an unhandled exception inside the coroutine |
return_void() |
Deals with the end or a co_return that returns nothing |
return_value(val) |
Deals with a return value from co_return |
final_suspend() |
Final suspend point (to let the coroutine end lazily) |
await_transform(...) |
Maps values from co_await to awaiters |
operator new(sz) |
Defines the way the coroutine allocates memory |
operator delete(ptr, sz) |
Defines the way the coroutine frees memory |
get_return_object_on_... |
Defines the reaction if memory allocation failed |
...allocation_failure() |
|
|
|
Table 15.1. Special member functions of coroutine promises
Some of these functions are mandatory, some of them depend on whether the coroutine yields intermediate or final results, and some of the are optional.
15.3.1 Mandatory Promise Operations
For coroutine promises, the following member functions are required. Without them, the code does not compile or runs into undefined behavior.
Constructor
The constructor of coroutine promises is called by the coroutine framework when a coroutine is initialized. The constructor can be used by the compiler to initialize the coroutine state with some arguments. For this, the signature of the constructor has to match the arguments passed to the coroutine when it is called.
This technique is especially used by coroutine traits.
get_return_object()
get_return_object() is used by the coroutine frame to create the return value of the coroutine.
The function usually has to return the coroutine interface, which is initialized with the coroutine handle, which is usually initialized with the static coroutine handle member function from_promise(), which itself is initialized with the promise.
516 |
Chapter 15: Coroutines in Detail |
For example:
class CoroTask { public:
// native coroutine handle and its promise type: struct promise_type;
using CoroHdl = std::coroutine_handle<promise_type>; CoroHdl hdl;
struct promise_type {
auto get_return_object() { // init and return the coroutine interface return CoroTask{CoroHdl::from_promise(*this)};
}
...
}
...
};
In principle, get_return_object() may have different return types:
•The typical approach is that get_return_object() returns the coroutine interface by explicitly initializing it with the coroutine handle (as above).
•Instead, get_return_object() can also return the coroutine handle. In that case, the coroutine interface is implicitly created. This requires that the interface constructor is not explicit.
It is currently not clear when exactly the coroutine interface is created in this case (see http://wg21.link/cwg2563). Therefore, the coroutine interface object might or might not exist when initial_suspend() is called, which can create trouble if something goes wrong.
Therefore, you should better avoid to use this approach.
•In rare cases, it might even be useful to not return anything, and specify the return type to be void. Using coroutine traits can be one example.
initial_suspend()
initial_suspend() defines the initial suspend point of the coroutine, which is used primarily to specify whether the coroutine should automatically suspend after its initialization (start lazily) or start immediately (start eagerly).
The function is called for the promise prm of the coroutine as follows:
co_await prm.initial_suspend();
Therefore, initial_suspend() should return an awaiter.
Usually, initial_suspend() returns
•std::suspend_always{}, if the coroutine body is started later/lazily, or
•std::suspend_never{}, if the coroutine body is started immediately/eagerly For example:
class CoroTask { public:
...
15.3 Coroutine Promises in Detail |
517 |
struct promise_type { |
|
... |
|
auto initial_suspend() { |
// suspend immediately |
return std::suspend_always{}; |
// - yes, always |
} |
|
... |
|
} |
|
... |
|
}; |
|
However, you can also let the decision of an eager or lazy start depend on some business logic or use this function to perform some initialization for the scope of the coroutine body.
final_suspend() noexcept
final_suspend() defines the final suspend point of the coroutine and is called like initial_suspend() for the promise prm of the coroutine as follows:
co_await prm.final_suspend();
This function is called by the coroutine frame outside the try block that encloses the coroutine body after return_void(), return_value(), or unhandled_exception() is called. Because final_suspend() is outside the try block, it has to be noexcept.
The name of this member function is a little misleading because it gives the impression that you could also return std::suspend_never{} here to force one more resumption after reaching the end of the coroutine. However, it is undefined behavior to resume a coroutine that is really suspended at the final suspend point. The only thing you can do with a coroutine suspended here is destroy it.
Therefore, the real purpose of this member function is to execute some logic, such as publishing a result, signaling completion, or resuming a continuation somewhere else.
Instead, the recommendation is to structure your coroutines so that they do suspend here where possible. One reason is that it makes it much easier for the compiler to determine when the lifetime of the coroutine frame is nested inside the caller of the coroutine, which makes it more likely that the compiler can elide heap memory allocation of the coroutine frame.
Therefore, unless you have a good reason not to do so, final_suspend() should always return
std::suspend_always{}. For example: |
|
class CoroTask { |
|
public: |
|
... |
|
struct promise_type { |
|
... |
|
auto final_suspend() noexcept { |
// suspend at the end |
... |
|
return std::suspend_always{}; |
// - yes, always |
} |
|
... |
|
} |
|
... |
|
}; |
|
518 |
Chapter 15: Coroutines in Detail |
unhandled_exception()
unhandled_exception() defines the reaction when the coroutine body throws an exception. The function is called inside the catch clause of the coroutine frame.
Possible reactions to an exception here are:
•Ignoring the exception
•Processing the exception locally
•Ending or aborting the program (e.g., by calling std::terminate())
•Storing the exception for later use with std::current_exception()
The way to implement these reactions is discussed later in a separate subsection.
In any case, after this function is called without ending the program, final_suspend() is called directly and the coroutine is suspended.
The coroutine is also suspended if you throw or rethrow an exception in unhandled_exception(). Any exception thrown from unhandled_exception() is ignored.
15.3.2 Promise Operations to Return or Yield Values
Depending on whether and how co_yield or co_return is used, you also need some of the following promise operations.
return_void() or return_value()
You have to implement exactly one the two member functions provided to deal with return statements and the end of the coroutine.:
• return_void()
is called if the coroutine reaches the end (either by reaching the end of its body or by reaching a co_return statement without argument).
See the first coroutine example for details.
• return_value(Type)
is called if the coroutine reaches a co_return statement with an argument. The passed argument has to be or must convert to the specified type.
See the coroutine example with co_return for details.
It is undefined behavior if coroutines are implemented in a way that they sometimes may and sometimes may not return a value. Consider this example:
ResultTask<int> coroUB( ... )
{
if ( ... ) { co_return 42;
}
}
15.3 Coroutine Promises in Detail |
519 |
This coroutine is not valid. Having both return_void() and return_value() is not permitted.3 Unfortunately, if you provide a return_value(int) member function only, this code might even com-
pile and run and compilers might not even warn about it. This will hopefully change soon.
Note that you can overload return_value() for different types (except void) or make it generic:
struct promise_type {
...
void return_value(int val) {
...
}
void return_value(std::string val) {
...
}
};
In that case, a coroutine can co_return values of different types.
CoroGen coro()
{
int value = 0;
...
if ( ... ) {
co_return "ERROR: can't compute value";
}
...
co_return value;
}
yield_value(Type)
yield_value(Type) is called if the coroutine reaches a co_yield statement. For basic details, see the coroutine example with co_yield.
You can overload yield_value() for different types or make it generic:
struct promise_type { |
|
... |
|
auto yield_value(int val) { |
// reaction to co_yield for int |
... |
// - process yielded int |
return std::suspend_always{}; |
// - suspend coroutine |
} |
|
auto yield_value(std::string val) { |
// reaction to co_yield for string |
... |
// - process yielded string |
return std::suspend_always{}; |
// - suspend coroutine |
} |
|
}; |
|
3There is an ongoing discussion about whether to allow promises to have both return_void() and return_value() in a future C++ standard.
