Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
42
Добавлен:
10.02.2015
Размер:
169.47 Кб
Скачать

8. Определенный интеграл и его геометрический смысл (задача о площади криволинейной трапеции). Приближенное вычисление определенных интегралов, формулы трапеций и Симпсона.

Пусть функция у = f(x) определена на отрезке [а, b]. Разобьем сегмент [а, b] произвольным образом на n частей точками

.

Обозначим через

На каждом из сегментов выберем произвольные точки и составим интегральную сумму:

Обозначим – диаметр разбиения

если  конечный , не зависящий от способа разбиения отрезка [а, b] и выбора точек , то его значение называется определенным интегралом от функции f(x), его обозначение , а функция f(x) называется интегрируемой по Риману на [а, b].

Т1. Если функция f(x) интегрируема на [а, b], то она ограничена на этом сегменте. Если не ограничена => не интегрируема.

ДОК-ВО

Если функция f(x) не ограничена на [а, b], то  по крайней мере одна точка с  [а, b], в окрестности которой эта функция принимает сколь угодно большие по модулю значения. Тогда хотя бы один из отрезков [xi; xi+1]  c  за счет выбора точки произведение можно сделать как угодно большими по модулю  может быть сделана как угодно большой, значит не существует конечного предела суммы  неограниченная функция не является интегрируемой по Риману. ЧТД.

Покажем, что не всякая ограниченная функция является интегрируемой:

Функция ограничена, покажем, что она не интегрируема.

1) пусть – рац.

2) пусть – иррац.

зависит от выбора точек => функция не интегрируема.

Верхняя и нижняя сумма Дарбу.

Пусть функция у = f(x) ограничена на отрезке [а, b] и  ограничена на каждом из сегментов [xi; xi+1], тогда  si и Si:

– инфимум

– супремум

Инфимум – точная нижняя грань.

inf M = a означает, что  xM: ax – нижняя грань

не  a’: a’ > a a’ x – точность.

aM или aM.

Составим верхнюю и нижнюю суммы Дарбу:

Геометрический смысл верхней и нижней суммы Дарбу:

Т. Функция у = f(x), ограниченная на отрезке [а, b], интегрируема на этом отрезке для   > 0  такое разбиение отрезка [а, b], что n – n < .

Достаточные условия интегрируемости:

1) Если функция f(x) непрерывна на [а, b], то она интегрируема на нем.

2) Если функция f(x) монотонна на [а, b], то она интегрируема на нем.

3) Если функция f(x) ограничена на [а, b] и имеет лишь конечное число точек разрыва (т.е. является кусочно-непрерывной, разрывы I рода), то она интегрируема на [а, b].

Геометрический смысл (задача о площади криволинейной трапеции)

Пусть на отрезке [а, b] задана непрерывная положительная функция у = f(x).

Криволинейная трапеция – фигура, ограниченная сверху – графиком функции у = f(x), снизу – осью Ox, справа и слева – вертикальными прямыми

Разобьем отрезок [а, b] произвольным образом на n частей точками и через каждую точку проведем вертикальные прямые до пересечения с графиком функции у = f(x).

Обозначим через

На каждом из сегментов выберем произвольные точки и на как на основании построим прямоугольник высотой , тогда

Составим интегральную сумму:

= площади ступенчатого тела.

Свойства

1 если функции f(x) и (x) интегрируемы на [а, b], то функция f(x) + (x) также интегрируема на [а, b]:

2 будем считать по определению

3 если функция f(x) интегрируема на [а, b], то она интегрируема и на [b, а]:

4 если функция f(x) интегрируема на  двух из отрезков [а, b], [а, c], [c, b], то она интегрируема и на третьем отрезке:

5 если функция f(x) интегрируема на [а, b], то |f(x)| также интегрируема и на [b, а]. При этом:

Обратное утверждение неверно, т.е. из интегрируемости |f(x)| не следует интегрируемость f(x):

|f(x)| = 1 интегрируема, но f(x) не интегрируема.

6 если функция f(x) интегрируема на [а, b] и f(x) > 0, то

7 [теорема о двусторонней оценке] если функция f(x) интегрируема на [а, b] и m f(x)  M, то

8 [теорема о среднем] если функция f(x) непрерывна на [а, b], то  точка c(а, b):

Приближенные методы вычисления интегралов:

1) метод прямоугольников;

2) метод трапеций;

3) метод Симпсона.

Формулы трапеций. Для приближенного вычисления , где функция f(x) непрерывна на [а, b], делят отрезок [а, b] на n равных частей и выбирают шаг вычислений h = (ba) / n. Пусть xi – точки деления, xi = a + ih, i = 0..n.

Формула трапеций:

с абсолютной погрешностью

Для достижения заданной точности  шаг вычислений определяется из неравенства:

значения h округляется в сторону уменьшения так, чтобы n = (ba) / h было целым. Установив h, вычисляют интеграл, беря значение подынтегральной суммы хотя бы с одним запасным десятичным знаком.

Формулы Симпсона (параболическая). При применении формулы Симпсона n должно быть четным и на промежутке [x2i; x2i+2] кривая заменяется параболой.

с абсолютной погрешностью

Шаг вычислений определяется из неравенства:

Значения h округляют в сторону уменьшения так, чтобы n = (ba) / h было целым четным числом.

ЗАМЕЧАНИЕ: так как определение M2 и M4, вообще говоря, затруднительно, то на практике h подбирают исходя из здравого смысла, грубой прикидки. Затем шаг уменьшают вдвое и заново проводят вычисления. Если новый результат совпадает с полученным в сохраняемых нами десятичных знаках, то вычисления заканчиваются.

Для вычисления абсолютной погрешности формулы Симпсона можно применять принцип Рунге:

– результаты вычисления по формуле Симпсона соответственно с шагом h и 2h.

Соседние файлы в папке Ответы к ГОСу