Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Kse

.pdf
Скачиваний:
6
Добавлен:
10.02.2015
Размер:
911.98 Кб
Скачать

№1

Элементы научного метода познания

Наблюдение – целенаправленный, строгий процесс восприятия предметов действительности, которые не должны быть изменены.

Эмпирическое обобщение — замеченная в природе закономерность, причины которой нам еще непонятны. Например, эмпирическим обобщением наблюдений восхода солнца является вывод о том, что солнце восходит в восточной стороне горизонта.

Индукция — метод познания, основанный на выведении общих следствий из частных посылок. Так, если в течение нескольких лет наблюдений солнце каждый день восходит на востоке, возникает основание считать, что оно восходит на востоке всегда.

Гипотеза — предположение о причине той или иной закономерности, о сущности того или иного объекта или явления. Например, в мифологической картине мира для объяснения каждого явления предлагается гипотеза, связывающая его с отдельным духом или божеством. Научная же гипотеза должна отвечать следующим требованиям:

1.Быть проверяемой.

2.Обладать общностью, т.е. единым образом объяснять как можно больше разрозненных фактов и эмпирических обобщений.

3.Обладать предсказательной силой. Предсказательная сила гипотезы заключается в самой возможности делать конкретные и нетривиальные прогнозы на ее основе.

4.Быть логически непротиворечивой, поскольку из противоречивого положения можно вывести любое желаемое утверждение.

Теория — высшая форма организации научного знания, дающая точное и целостное представление о закономерностях определенной области действительности.В рамках научной теории одни из эмпирических обобщений получают свое объяснение, а другие трансформируются в законы природы.

Закон природы — это выраженная словесно или математически необходимая связь между свойствами материальных объектов и/или обстоятельствами происходящих с ними событий.Например, закон всемирного тяготения выражает необходимую связь между массами тел и силой их взаимного притяжения; периодический закон Менделеева — связь между атомной массой химического элемента и его химическими свойствами.

Абстрагирование — метод познания, основанный на том, что несущественные стороны и признаки изучаемого явления не учитываются.

Основной абстракцией Фалеса и его учеников стало представление о единой субстанции, лежащей в основе мира, — материи. Основа миропорядка сводилась к качественным изменениям этой субстанции, объясняющим возникновение, развитие и структуру окружающего мира.

У самого Фалеса роль субстанции играло конкретное вещество — вода, однородная, бесформенная и подвижная, а у его ученика Анаксимена — воздух. Однако другой ученик Фалеса, Анаксимандр, уже учил, что первоосновой сущего служит апейрон («беспредельное»), не воспринимаемый непосредственно органами чувств.

Дедукция — метод познания, основанный на выведении частных следствий из общих посылок.Греческие мыслители поняли, что соблюдение определенных правил гарантирует получение правильных выводов из правильного исходного положения. Совокупность правил мышления оформилась в отдельную философскую дисциплину — логику.

Модель — это абстракция или материальный объект, которые обладают только основными свойствами и связями прототипа, а в остальном существенно проще его.Моделирование как метод научного познания основано на изучении каких-либо объектов посредством их моделей. Появление этого метода вызвано тем, что иногда изучаемый объект или явление оказываются недоступными для прямого наблюдения. Сущность моделирования как метода познания заключается в замещении объекта исследования моделью, причем в качестве модели могут быть использованы объекты как естественного, так и искусственного происхождения. Возможность моделирования основана на том, что модель в определенном отношении отображает какие-либо стороны прототипа. При моделировании очень важно наличие соответствующей теории или гипотезы, которые строго указывают пределы и границы допустимых упрощений при моделировании.

Эксперимент – метод познания, при помощи которого в контролируемых и управляемых условиях исследуются явления действительности.Он отличается от наблюдения вмешательством в исследуемый объект. Проводя эксперимент, исследователь не ограничивается пассивным наблюдением явлений, а сознательно вмешивается в их ход.

№3

В XIV веке Уильям Оккам был одним из самых известных философов своего времени, но сегодня мы знаем его лишь как автора принципа простоты, который он сформулировал в одной из своих книг, предложив «сбривать» лишнюю сложность в аргументации. Этот принцип получил название «бритва Оккама»* и звучал приблизительно так: «Non sunt entia multiplicanda praeter necessitatem», что означает: «Не нужно множить сущности без необходимости». Это предупреждение о том, что не надо прибегать к сложным объяснениям там, где вполне годятся простые.

ритва ккама» или лезвие ккама» методологический принцип, получивший название по имени английского монаха-францисканца, философа-

номиналиста Уильяма Оккама (Ockham, Ockam, Occam; ок. 12851349). В упрощенном виде он гласит: «Не следует множить сущее без

необходимости» (либо «Не следует привлекать новые сущности без самой крайней на то необходимости»). Этот принцип формирует базис

методологического редукционизма, также называемый принципом бережливости, или законом экономии.

Однако то, что называют «Бритвой Оккама», не было сформулировано Оккамом, он всего лишь сформулировал принцип, известный ещё со

времёнАристотеля и в логике носящий название принцип достаточного основания». «Бритва Оккама» — это лишь название принципа, а не

его атрибуция(указание на авторство).

Бритва Оккама используется в науке по принципу: если какое-то явление может быть объяснено двумя способами, например, первым — через привлечение сущностей (терминов, факторов, преобразований и т. п.) А, В и С, а вторым — через А, В, С и D, и при этом оба способа дают одинаковый результат, то сущность D лишняя, и верным является первый способ (который может обойтись без привлечения лишней сущности)

№4

Три доказательства шарообразности Земли мы находим в книге Аристотеля "О небе".

1.Все тяжелые тела падают на землю под равными углами. Это первое по счету аристотелевское доказательство шарообразности Земли нуждается в пояснении. Дело в том, что Аристотель считал, что тяжелые элементы, к числу которых он относил землю и воду, естественные образом стремятся к центру мира, который поэтому совпадает с центре Земли. Если бы Земля была плоской, то тела падали бы не перпендикулярно, ибо они устремлялись бы к центру плоской Земли, но поскольку все тела не могут находиться непосредственно над этим центром, то большинство тел падало бы на землю по наклонной линии.

2.Но также (шарообразность Земли) следует из того, что явлено нашим чувствам. Ибо, конечно, затмения Луны не имели бы такой формы (если бы Земля была плоская - И.Л.). Определяющая же линия во время (лунных) затмений всегда дугообразна. Итак, вследствие того, что Луна затмевается по причине нахождения Земли между нею и Солнцем, форма Земли обязана быть шарообразной.

Здесь Аристотель опирается на учение Анаксагора о причине солнечных и лунных затмений. Отметим, что другие досократические философы, в частности Гераклит Эфесский и Анаксимандр придерживались в этом вопросе совершенно фантастических взглядов. Анаксимандр считал, что Солнце представляет собой обруч, наполненный огнем. В обруче имеется круглое отверстие и сквозь это отверстие мы видим Солнце, потому оно и кажется круглым. Когда отверстие в обруче закрывается, наступает солнечное затмение. То же самое Анаксимандр говорил и о Луне. Гераклит, как мы уже упоминали, считал, что Солнце представляет собой воспламенившиеся испарения, собранные в некой лодочке. Когда эта лодочка переворачивается вверх дном, наступает солнечное затмение (то же самое утверждал Гераклит и относительно Луны).

3. Некоторые из звезд видны в Египте и на Кипре, а в местах, расположенных севернее, не видны. Из этого не только явствует, что форма Земли сферическая, но и что Земля - сфера небольших размеров.

№5

КАК ВПЕРВЫЕ ИЗМЕРИЛИ ОКРУЖНОСТЬ ЗЕМЛИ Совершая путешествия из г. Александрии на юг, в г. Сиену (теперь Асуан), люди замечали, что там летом в тот день, когда солнце бывает всего выше на небе

(день летнего солнцестояния — 21 или 22 июня), в полдень оно освещает дно глубоких колодцев, т. е. бывает как раз над головой, в зените. Вертикально стоящие столбы в этот момент не дают тени. В Александрии же и в этот день солнце в полдень не доходит до зенита, не освещает дна колодцев, предметы дают тень.

Эратосфен измерил, насколько полуденное солнце в Александрии отклонено от зенита, и получил величину, равную 7°12', что составляет 1/50 окружности. Это ему удалось сделать при помощи прибора, называемого скафисом. Скафис представлял собой чашу в форме полушария. В центре ее отвесно укреплялась игла.

Слева — определение высоты солнца скафисом. В центре — схема направления солнечных лучей: в Сиене они падают вертикально, в Александрии — под углом в 7°12'. Справа — на-правление солнечного луча в Сиене в момент летнего солнцестояния.

Тень от иглы падала на внутреннюю поверхность скафиса. Для измерения отклонения солнца от зенита (в градусах) на внутренней поверхности скафиса проводились окружности, помеченные цифрами. Если, например, тень доходила до окружности, помеченной цифрой 50, солнце стояло на 50° ниже зенита. Построив чертеж, Эратосфен совершенно правильно заключил, что Александрия отстоит от Сиены на 1/50 окружности Земли. Чтобы узнать окружность Земли, оставалось измерить расстояние между Александрией и Сиеной и умножить его на 50. Это расстояние было определено по числу дней, которое тратили караваны верблюдов на переход между городами. В единицах того времени оно равнялось 5 тыс. стадий. Если 1/50 окружности Земли равняется 5000 стадий, то вся окружность Земли равна 5000х50 = 250 000 стадий. В переводе на наши меры это расстояние приблизительно равно 39 500 км. Зная длину окружности, можно вычислить и величину радиуса Земли. Радиус всякой окружности в 6,283 раза меньше ее длины. Поэтому средний радиус Земли, по Эратосфену, оказался равным круглому числу — 6290 км, а диаметр — 12 580 км. Так Эратосфен нашел приблизительно размеры Земли, близкие к тем, которые определены точными приборами в наше время.

№6

Создание гелиоцентрической системы мира явилось результатом долголетнего труда Коперника. Он начал с попыток усовершенствовать геоцентрическую систему мира, изложенную в «Альмагесте» Птолемея. Многочисленные работы в этом направлении до Коперника сводились или к более точному определению элементов тех деферентов и эпициклов, посредством которых Птолемей представил движения небесных тел, или к добавлению новых эпициклов. Коперник, поняв зависимость между видимыми движениями планет и Солнца, хорошо известную ещё Птолемею, на этой основе построил гелиоцентрическую систему мира. Благодаря ей правильное объяснение получил ряд непонятных с точки зрения геоцентрической системы закономерностей движения планет (следует заметить, что впервые идею о вращении Земли вокруг Солнца высказал около 280 г. до н.э. греческий астроном Аристарх Самосский). Таблицы, составленные Коперником, много точнее таблиц Птолемея, что имело большое значение для быстро развивавшегося тогда мореплавания. Широкое их использование способствовало распространению гелиоцентрической системы мира.

Результаты труда были обобщены Коперником в сочинении «Об обращениях небесных сфер», опубликованном в 1543 г., незадолго до его смерти. Коперник развил новые философские идеи лишь в той мере, в какой это было необходимо для очередных практических нужд астрономии. Он сохранил представление о конечной Вселенной, ограниченной сферой неподвижных звёзд, хотя в этом уже не было необходимости (существование и конечные размеры сферы неподвижных звёзд были лишь неизбежным следствием представления о неподвижности Земли). Коперник стремился прежде всего к тому, чтобы его сочинение было столь же полным руководством к решению всех астрономических задач, каким было «Великое математическое построение» Птолемея. Поэтому он сосредоточил внимание на усовершенствовании математических теорий Птолемея. Важное значение имеет вклад Коперника в развитие тригонометрии, как плоской, так и сферической; главы сочинения Коперника, посвящённые тригонометрии, были изданы отдельно в 1542 г. его единственным учеником Г.И. Ретиком.

Философское значение гелиоцентрической системы состояло в том, что Земля, считавшаяся раньше центром мира, низводилась на положение одной из планет. Возникла новая идея – о единстве мира, о том, что «небо» и «земля» подчиняются одним и тем же законам. Революционный характер взглядов Коперника был понят католической церковью лишь после того, как Г. Галилей и другие развили философские следствия его учения. В 1616 г. декретом инквизиции книга Коперника была внесена «впредь до исправления» в «Индекс запрещённых книг» и оставалась под запретом до 1828 г.

№7

Под коперниковской революцией понимается смена парадигм с модели мироздания Птолемея, которая постулировала, что Земля является центром вселенной, на гелиоцентрическую модель с Солнцем в центре нашей солнечной системы. Это событие стало одной из стартовых точек начала научной революции XVI столетия. Учение Коперника было равносильно революционной перестройке не только в астрономии и естествознании, но и в методах научного исследования и познания. Оно привело к радикальным изменениям образа мышления естествоиспытателей, повернув его от привычных и закостенелых догм к непосредственному исследованию реального мира.

Николай Коперник

В своём труде Об обращениях небесных сфер (1543) Николай Коперник показал, что движение небес может быть объяснено без утверждения, что Земля находится в геометрическом центре системы. Это привело к выводу, что мы можем отказаться от предположения, что мы наблюдаем Вселенную из особого положения. Хотя Коперник инициировал научную революцию, он, конечно, не завершил её. Он продолжал верить в небесные сферы, и помог совсем немного для прямых наблюдений и доказательства того, что его теория ближе к истине, чем система Птолемея.

№8 Роль раге в развитии астрономии.

Датский астроном. Родился 14 декабря 1546 в поместье Кнудструп (пров. Сконе, Дания, ныне Швеция). В 1559–1565 учился сначала в Лютеранском университете Копенгагена, затем в Лейпцигском университете. Под впечатлением от наблюдения солнечного затмения, произошедшего в 1560 в точном соответствии с предсказанием, заинтересовался астрономией. С 1563 начал вести астрономические наблюдения. В ноябре 1572 наблюдал новую звезду в созвездии Кассиопеи. Как выяснилось уже в 20 в., это была сверхновая, вспыхнувшая в нашей Галактике; теперь она называется Звезда Тихо. Проявив интерес к исследованиям Тихо Браге, датский король Фридрих II предоставил в его распоряжение остров Вен в Эрисуни (близ Копенгагена), где Браге построил обсерваторию Уранибор («Небесный замок»). Большинство инструментов, которыми была оснащена обсерватория, ученый сделал сам, ему удалось добиться высокой точности измерений. Тихо Браге составил новые точные солнечные таблицы и уточненный каталог 800 звезд. Полученные данные позволили И.Кеплеру открыть законы движения планет. Сам Браге не признавал системы Коперника и считал, что Земля находится в центре мира, Солнце движется вокруг Земли, а остальные планеты обращаются вокруг Солнца. В 1597, после смерти Фридриха II, Тихо Браге покинул Данию, два года жил в Германии, а в 1599 переехал в Прагу, где был придворным астрономом. Умер Тихо Браге в Праге 24 октября 1601.

№9. 3 закона Кэплера

Законы Кеплера — три эмпирических соотношения, интуитивно подобранных Иоганном Кеплером на основе анализа астрономических наблюдений Тихо

Браге. Описывают идеализированную гелиоцентрическую орбиту планеты. В рамках классической механики выводятся из решения задачи двух

тел предельным переходом mp/mS → 0, где mp, mS — массы планеты и Солнца.

[править]Первый закон Кеплера (закон эллипсов)

Первый закон Кеплера.

Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.

Форма эллипса и степень его сходства с окружностью характеризуется отношением , где c — расстояние от центра эллипса до его фокуса

(половина межфокусного расстояния), a большая полуось. Величина e называется эксцентриситетом эллипса. При c = 0 и e = 0 эллипс превращается в

окружность.

Второй закон Кеплера (закон площадей)

Второй закон Кеплера.

Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные промежутки времени радиус-вектор, соединяющий Солнце и

планету, описывает равные площади.

Применительное к нашей Солнечной системе, с этим законом связаны два понятия: перигелий — ближайшая к Солнцу точка орбиты, и афелий — наиболее удалённая точка орбиты. Таким образом, из второго закона Кеплера следует, что планета движется вокруг Солнца неравномерно, имея в перигелии большую линейную скорость, чем в афелии.

Каждый год в начале января Земля, проходя через перигелий, движется быстрее, поэтому видимое перемещение Солнца по эклиптике к востоку также происходит быстрее, чем в среднем за год. В начале июля Земля, проходя афелий, движется медленнее, поэтому и перемещение Солнца по эклиптике замедляется. Закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.

Третий закон Кеплера (гармонический закон)

Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей орбит планет. Справедливо не только для планет, но и для их спутников.

, где T1 и T2 — периоды обращения двух планет вокруг Солнца, а a1 и a2 — длины больших полуосей их орбит.

Ньютон установил, что гравитационное притяжение планеты определенной массы зависит только от расстояния до неё, а не от других свойств, таких, как состав или температура. Он показал также, что третий закон Кеплера не совсем точен — в действительности в него входит и масса

планеты: , где M — масса Солнца, а m1 и m2 — массы планет.

Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды.

№10

В 1604 году Кеплер публикует свои наблюдения сверхновой, называемой теперь его именем.

Будучи великолепным наблюдателем, Тихо Браге за много лет составил объёмный труд по наблюдению планет и сотен звёзд, причём точность его измерений была существенно выше, чем у всех предшественников. Для повышения точности Браге применял как технические усовершенствования, так и специальную методику нейтрализации погрешностей наблюдения. Особо ценной была систематичность измерений.

На протяжении нескольких лет Кеплер внимательно изучает данные Браге и в результате тщательного анализа приходит к выводу, что траектория движения Марса представляет собой не круг, а эллипс, в одном из фокусов которого находится Солнце — положение, известное сегодня как первый закон Кеплера.

Дальнейший анализ привёл ко второму закону: радиус-вектор, соединяющий планету и Солнце, в равное время описывает равные площади. Это означало,

что чем дальше планета от Солнца, тем медленнее она движется.

Оба закона были сформулированы Кеплером в 1609 году в книге «Новая астрономия», причём, осторожности ради, он относил их только к Марсу.

№11

В 1609 году Галилей самостоятельно построил свой первый телескоп с выпуклым объективом и вогнутым окуляром. Труба давала приблизительно трёхкратное увеличение[85]. Вскоре ему удалось построить телескоп, дающий увеличение в 32 раза. Отметим, что термин телескоп ввёл в науку именно

Галилей (сам термин предложил ему Федерико Чези, основатель «Академии деи Линчеи»).[86] Ряд телескопических открытий Галилея способствовали утверждению гелиоцентрической системы мира, которую Галилей активно пропагандировал, и опровержению взглядов геоцентристов Аристотеля и Птолемея.

Первые телескопические наблюдения небесных тел Галилей провёл 7 января 1610 года.[1][87] Эти наблюдения показали, что Луна, подобно Земле, имеет сложный рельеф — покрыта горами и кратерами. Известный с древних времен пепельный свет Луны Галилей объяснил как результат попадания на наш естественный спутник солнечного света, отражённого Землёй.

Галилей открыл также (независимо от Иоганна Фабрициуса и Хэрриота) солнечные пятна. Существование пятен и их постоянная изменчивость опровергали тезис Аристотеля о совершенстве небес (в отличие от «подлунного мира»).[31] По результатам их наблюдений Галилей сделал вывод, что Солнце вращается вокруг своей оси, оценил период этого вращения и положение оси Солнца.

№13

Находясь в Падуанском университете, Галилей изучал инерцию и свободное падение тел. В частности, он заметил, что ускорение свободного падения не зависит от веса тела, таким образом опровергнув первое утверждение Аристотеля.

В своей последней книге Галилей сформулировал правильные законы падения: скорость нарастает пропорционально времени, а путь — пропорционально квадрату времени.[76] В соответствии со своим научным методом он тут же привёл опытные данные, подтверждающие открытые им законы. Более того,

Галилей рассмотрел (в 4-й день «Бесед») и обобщённую задачу: исследовать поведение падающего тела с ненулевой горизонтальной начальной скоростью.

Он совершенно правильно предположил, что полёт такого тела будет представлять собой суперпозицию(наложение) двух «простых движений»:

равномерного горизонтального движения по инерции и равноускоренного вертикального падения. Галилей доказал, что указанное, а также любое брошенное под углом к горизонту тело летит по параболе.[76] В истории науки это первая решённая задачадинамики. В заключение исследования Галилей доказал, что максимальная дальность полёта брошенного тела достигается для угла броска 45° (ранее это предположение высказал Тарталья, который,

однако, не смог его строго обосновать[77]). На основе своей модели Галилей (ещё в Венеции) составил первые артиллерийские таблицы.[78]

Галилей опроверг и второй из приведённых законов Аристотеля, сформулировав первый закон механики (закон инерции): при отсутствии внешних сил тело либо покоится, либо равномерно движется. То, что мы называем инерцией, Галилей поэтически назвал «неистребимо запечатлённое движение». Правда, он допускал свободное движение не только по прямой, но и по окружности (видимо, из астрономических соображений). Правильную формулировку закона позднее дали Декарт и Ньютон; тем не менее общепризнанно, что само понятие «движение по инерции» впервые введено Галилеем, и первый закон механики по справедливости носит его имя.[79]

№14

ринцип относительности — фундаментальный физический принцип, согласно которому все физические процессы винерциальных системах отсчёта протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения.

Отсюда следует, что все законы природы одинаковы во всех инерциальных системах отсчёта.[1]

Различают принцип относительности Эйнштейна (который приведён выше) и принцип относительности Галилея, который утверждает то же самое, но не для всех законов природы, а только для законов классической механики, подразумевая применимость преобразований Галилея, оставляя открытым вопрос о применимости принципа относительности к оптике и электродинамике.

Принцип относительности Галилея

Из формулы для ускорений следует, что если движущаяся система отсчета движется относительно первой без ускорения, то есть , то ускорение тела относительно обеих систем отсчета одинаково.

Поскольку в Ньютоновской динамике из кинематических величин именно ускорение играет роль (см.второй закон Ньютона), то, если довольно естественно предположить, что силы зависят лишь от относительного положения и скоростей физических тел (а не их положения относительно абстрактного начала отсчета), окажется, что все уравнения механики запишутся одинаково в любой инерциальной системе отсчета — иначе говоря, законы механики не зависят от того, в какой из инерциальных систем отсчета мы их исследуем, не зависят от выбора в качестве рабочей какой-то конкретной из инерциальных систем отсчета. Также — поэтому — не зависит от такого выбора системы отсчета наблюдаемое движение тел (учитывая, конечно, начальные скорости). Это утверждение известно как принцип относительности Галилея, в отличие от Принципа относительности Эйнштейна

№15

Первый закон Ньютона

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.

Второй закон Ньютона

В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

где ускорение материальной точки;

сила, приложенная к материальной точке; m масса материальной точки.

Или в более известном виде:

Третий закон Ньютона :

Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки,

равными по модулю и противоположными по направлению:

№16

В рамках классической механики гравитационное взаимодействие описывается законом всемирного тяготения. Этот закон был открыт Ньютоном в 1666 г..

Он гласит, что сила гравитационного притяжения между двумя материальными точками массы m1 и m2, разделёнными расстоянием R, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними — то есть:

Здесь G гравитационная постоянная, равная м³/(кг с²).

№17

Закон всемирного тяготения лежит в основе небесной механики – науки о движении планет. С помощью этого закона с огромной точностью определяются положения небесных тел на небесном своде на многие десятки лет вперед и вычисляются их траектории. Закон всемирного тяготения применяется также в расчетах движения искусственных спутников Земли и межпланетных автоматических аппаратов. С помощью этой теории были уточнены законы Кеплера,

открыты планеты Нептун, Уран и Плутон, вычислены их орбиты и составлены таблицы положений этих планет на много лет вперед. При помощи закона всемирного тяготения можно вычислить массу планет и их спутников; объяснить такие явления, как приливы и отливы воды в океанах, и многое другое.

№18

Эксперимент Кавендиша — первое экспериментальное измерение гравитационной постоянной, осуществлённое Генри Кавендишем в 17971798 годах.

Первоначально эксперимент был предложен Джоном Мичеллом. Именно он сконструировал главную деталь в экспериментальной установке — крутильные весы, однако умер в 1793 так и не поставив опыта. После его смерти экспериментальная установка перешла к Генри Кавендишу. Кавендиш модифицировал установку, провёл опыты и описал их в Philosophical Transactions в 1798.

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения, однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века. Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому,

только после перехода к единой метрической системе мер. Возможно впервые это было сделано французским физиком Пуассоном в «Трактате по механике»

(1809), по крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено. В 1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов, изобретённых Джоном

Мичеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли. Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли.

Точность измеренного значения G со времён Кавендиша увеличилась, но и его результат[6] был уже достаточно близок к современному.

№19

Автор фундаментального труда «Математические начала натуральной философии», в котором он изложилзакон всемирного тяготения и три закона механики, ставшие основой классической механики. Разработал дифференциальное и интегральное исчисление, теорию цвета и многие другие математические и физические теории.

С работами Ньютона связана новая эпоха в физике и математике. Он завершил начатое Галилеем создание теоретической физики, основанной, с одной стороны, на опытных данных, а с другой — на количественно-математическом описании природы. В математике появляются мощные аналитические методы.

В физике основным методом исследования природы становится построение адекватных математических моделей природных процессов и интенсивное исследование этих моделей с систематическим привлечением всей мощи нового математического аппарата. Последующие века доказали исключительную плодотворность такого подхода.

№20

-Тихо Браге, предложил собственную модель строения мира, отличную от моделей Птолемея и Коперника, но которая являлась шагом назад по сравнению с

моделью Коперника. После многолетних и самых точных в то время наблюдений Тихо Браге создал таблицы положений всех известных к тому времени

планет. В таблицах были точно определены положения планет в фиксированные моменты времени. Но они не давали возможности определить их

положение в любой момент времени. В конце жизни Тихо Браге передал свои труды одному из своих учеников и помощников немецкому астроному Иоганну

Кеплеру для дальнейших уточнений, исправлений и опубликования.

-И. Кеплер, анализируя таблицы Тихо Браге, пытался свернуть их в формулы, найти такие математические выражения, которые при подстановке в них

значений времени наблюдений планет Тихо Браге давали бы значения координат, приведенным в таблицах. В результате И. Кеплер выдвинул гипотезу, что

траекториями движения планет являются эллипсы. Наиболее существенным вкладом И. Кеплера в уточнение существующей модели мира являлось то, что он

сумел найти математический объект - эллипс, который описывает все существенные особенности движения планет. Законы Кеплера позволили более точно

описать движение планет, но они не обладают всеобщностью. Кеплер предложил более точное по сравнению с известным до него описание движения

планет, используя уже известные понятия: эллипс, фокусы, полуоси.

-ученый Галилео Галилей совершает ряд выдающихся открытий, вводит в качестве основы научного познания математическое описание наблюдения

различных природных явлений. При этом четко определяет такие понятия как длина, объем, скорость, сила, инерция, равномерное движение. Он

систематизировал научные идеи и факты, используя которые много лет спустя, Исаак Ньютон ввел для описания движения новое понятие - тяготение и

открыл закон всемирного тяготения. Выдвинув первоначально гипотезу о взаимном притяжении тел, используя при этом уже известные понятия силы и

массы, он качественно определил силу взаимодействия между телами и сформулировал закон всемирного тяготения, который является, по сути обобщением

законов Иоганна Кеплера.

№21

В. Гильберт путем экспериментов пришел к выводу, что притяжение магнита и притяжение янтаря имеют разную природу, т.е. он разделил магнитные и

электрические явления, которые после его работ исследовались отдельно. Гильберт открыл много веществ, которые, так же как и янтарь, могут притягивать

мелкие кусочки материи и пыль.

Значительный перелом в представлениях об электрических и магнитных явлениях наступил в самом начале XVII в., когда вышел в свет фундаментальный научный труд видного английского ученого Вильяма Гильберта (1554—1603 гг.) О магните, магнитных телах и о большом магните — Земле» (1600 г.). Будучи последователем экспериментального метода в естествознании. В. Гильберт провел более 600 искусных опытов, открывших ему тайны «скрытых причин различных явлений».

В отличие от многих своих предшественников Гильберт считал, что причиной действия на магнитную стрелку является магнетизм Земли, которая является большим магнитом. Свои выводы он основывал на оригинальном эксперименте, впервые им осуществленным.

Он изготовил из магнитного железняка небольшой шар — «маленькую Землю — тереллу» и доказал, что магнитная стрелка принимает у поверхности этой «тереллм» такие же положения, какие она принимает в поле земного магнетизма. Он установил возможность намагничивания железа посредством земного магнетизма.

Исследуя магнетизм, Гильберт занялся также и изучением электрических явлений. Он доказал, что электрическими свойствами обладает не только янтарь, но и многие другие тела — алмаз, сера, смола, горный хрусталь, электризующиеся при их натирании. Эти тела он называл «электрическими», в соответствии с греческим названием янтаря (электрон).

Но Гильберт безуспешно пытался наэлектризовать металлы, не изолируя их. Поэтому он пришел к ошибочному выводу о невозможности электризации металлов трением. Это заключение Гильберта было убедительно опровергнуто спустя два столетия выдающимся русским электротехником академиком В. В. Петровым.

Сравнивая магнитные и электрические явления, Гильберт утверждал, что они имеют разную природу: например, «электрическая сила» происходит только от трения, тогда как магнитная — постоянно воздействует на железо, магнит поднимает тела значительной тяжести, электричество — только легкие тела. Этот ошибочный вывод Гильберта продержался в науке более 200 лет.

Пытаясь объяснить механизм воздействия магнита на железо, а также способность наэлектризованных тел притягивать другие легкие тела, Гильберт считал магнетизм как особую «силу одушевленного существа», а электрические явления, «истечениями» тончайшей жидкости, которая вследствие трения «выливается из тела» и непосредственно действует на другое притягиваемое тело.

В течение многих веков магнитные явления объясняли действием особой магнитной жидкости, и как это будет показано далее - фундаментальный труд Гильберта выдержал в течение XVII в. несколько изданий, он был настольной книгой многих естествоиспытателей в разных странах Европы и сыграл огромную роль в развитии учения об электричестве и магнетизме.

№22

Как естествоиспытатель он объяснил происхождение штормовых ветров (норд-остов), при его участии были проведены измерения скорости, ширины и глубины Гольфстрима и это течение (название которому дал сам Франклин) было нанесено на карту, но основной областью его исследований была физика. Он занимался измерением теплопроводности различных материалов, изучал явления охлаждения жидкости при испарении, исследовал распространение звука в воде и воздухе и т. д. Наибольшее значение имели его работы по электричеству, в которых Франклин объяснил принцип действия лейденской банки, ввел общепринятое теперь обозначение электрически заряженных состояний «+» и «—», доказал электрическую природу молнии и изобрел громоотвод, а также лампы для уличных фонарей, экономичную «франклиновскую» печь, применение электрической искры для взрыва пороха и др.

№23

Эрстед на лекции в университете демонстрировал нагрев проволоки электричеством от вольтова столба, для чего составил электрическую, или, как тогда

говорили, гальваническую цепь. На демонстрационном столе находился морской компас, поверх стеклянной крышки которого проходил один из проводов.

Вдруг кто-то из студентов (здесь показания свидетелей расходятся — говорят, это был аспирант, а то и вовсе университетский швейцар) случайно заметил, что

когда Эрстед замкнул цепь, магнитная стрелка компаса отклонилась в сторону. Однако существует мнение, что Эрстед заметил отклонение стрелки сам.

На этой лекции Эрстед продемонстрировал, что под воздействием поднесенного на близкое расстояние проводника магнитная стрелка компаса отклоняется.

Это было первое наглядное и неоспоримое подтверждение существования прямой связи между электричеством и магнетизмом. Открытие Эрстеда

буквально вдохновило целый ряд ученых, прежде всего Ампера (см. Закон Ампера), а также Био и Савара (см. Закон Био—Савара), на проведение новых

экспериментов с целью определения математических закономерностей выявленной связи и, в конечном итоге, проложило дорогу к теории

электромагнетизма Максвелла

После своего открытия Эрстед стал всемирно признанным учёным. Он был избран членом многих наиболее авторитетных научных обществ: Лондонского

Королевского общества иПарижской Академии. В частности в 1830 г. его избрали почетным членом Петербургской академий наук.

№24

Одновременно с появлением электродвигателя возникает задача конструирования электромагнитных генераторов электрического тока. Первый генератор тока был построен самим Фарадеем. Фарадей был первым физиком, которому удалось получить вращение проводника с током в магнитном поле, был Фарадей. В 1821 году он сконструировал очень простое приспособление: конец подвешенного проводника был опущен в резервуар с ртутью, в который снизу входил слегка выступающий над поверхностью ртути вертикальный магнит. При пропускании тока через ртуть и проводник последний начинал вращаться вокруг магнита. Опыт Фарадея, блестяще модифицированный Ампером, бесчисленными способами варьировался затем на протяжении всего XIX века.

Прототип генератора электрического тока был построен и описан Фарадеем вместе с первыми опытами по электромагнитной индукции. Этот генератор состоял из медного диска, вращающегося между полюсами постоянного магнита; при этом в диске индуцировалась э. д. с. Полюсами генератора служили ось диска и неподвижная щетка, имеющая скользящий контакт с краем диска.

№25

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через

него.

Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом

проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром.

Величинаэлектродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение

контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

. Будучи мгновенными, моментально исчезая вслед за своим появлением, индуктивные токи не имели бы никакого практического значения, если бы Фарадей не нашел способ при помощи остроумного приспособления (коммутатора) беспрестанно прерывать и снова проводить первичный ток, идущий от батареи по первой проволоке, благодаря чему во второй проволоке беспрерывно возбуждаются все новые и новые индуктивные токи, становящиеся, таким образом, постоянными. Так был найден новый источник электрической энергии, помимо ранее известных (трения и химических процессов), — индукция, и новый вид этой энергии — индукционное электричество.

В 1820 г. Ганс Христиан Эрстед показал, что протекающий по цепи электрический ток вызывает отклонение магнитной стрелки. Если электрический ток порождает магнетизм, то с магнетизмом должно быть связано появление электрического тока. Эта мысль захватила английского ученого М. Фарадея. «Превратить магнетизм в электричество», — записал он в 1822 г. в своём дневнике. Многие годы настойчиво ставил он различные опыты, но безуспешно, и только 29 августа 1831 г. наступил триумф: он открыл явление электромагнитной индукции. Установка, на которой Фарадей сделал своё открытие, заключалась в том, что Фарадей изготовил кольцо из мягкого железа примерно 2 см шириной и 15 см диаметром и намотал много витков медной проволоки на каждой половине кольца. Цепь одной обмотки замыкала проволока, в её витках находилась магнитная стрелка, удаленная настолько, чтобы не сказывалось действие магнетизма, созданного в кольце. Через вторую обмотку пропускался ток от батареи гальванических элементов. При включении тока магнитная стрелка совершала несколько колебаний и успокаивалась; когда ток прерывали, стрелка снова колебалась. Выяснилось, что стрелка отклонялась в одну сторону при включении тока и в другую, когда ток прерывался. М. Фарадей установил, что «превращать магнетизм в электричество» можно и с помощью обыкновенного магнита.

№26

СИЛОВЫ Е ЛИ НИИ-это, линии, проведенные в каком-либо силовом поле (см. СИЛОВОЕ ПОЛЕ) (электрическом, магнитном, гравитационном), касательные к которым в каждой точке поля совпадают по направлению с вектором, характеризующим данное поле (вектор напряженности(см. НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ) электрического или гравитационного полей, вектор магнитной индукции (см. МАГНИТНАЯ ИНДУКЦИЯ)). Силовые линии — только наглядный способ изображения силовых полей. Впервые понятие «силовые линии» для электрических и магнитных полей ввел М.Фарадей (см. ФАРАДЕЙ Майкл).

Так как напряженности полей и магнитная индукция — однозначные функции точки, то через каждую точку пространства может проходить только одна силовая линия. Густота силовых линий обычно выбирается так, чтобы число силовых линий, пересекающих единичную площадку, перпендикулярную к силовым линиям, было пропорционально напряженности поля (или магнитной индукции) на этой площадке. Т. о., силовые линии дают наглядную картину распределения поля в пространстве, характеризуя величину и направление напряженности поля.

Силовые линии электростатического поля (см. ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ) всегда незамкнуты: они начинаются на положительных зарядах и оканчиваются на отрицательных (или уходят на бесконечность). Силовые линии нигде не пересекаются, так как в каждой точке поля его напряженность имеет одно единственное значение и определенное направление. Густота силовых линий больше вблизи заряженных тел, где напряженность поля больше.

Силовые линии электрического поля в пространстве между двумя положительными зарядами расходятся; можно указать нейтральную точку, в которой поля сил отталкивания обоих зарядов гасят друг друга.

Силовые линии одиночного заряда представляют собой радиальные прямые, которые расходятся от заряда лучами, подобно силовым линиям гравитационного поля точечной массы или шара. Чем дальше от заряда, тем меньше густота линий — это иллюстрирует ослабление поля с увеличение расстояния.

Силовые линии, исходящие от заряженного проводника неправильной формы, сгущаются вблизи любого выступа или острия, вблизи вогнутостей или

полостей густота силовых линий уменьшается.

Если силовые линии исходят от положительно заряженного острия, находящегося вблизи отрицательно заряженного плоского проводника, то они сгущаются вокруг острия, где поле очень сильное, и расходятся в большую область вблизи плоскости, на которой оканчиваются, входя в плоскость перпендикулярно. Электрическое поле в пространстве между параллельными заряженными пластинами однородно. Линии напряженности в однородном электрическом поле параллельны друг другу.

Если в силовое поле попадает частица, например электрон, то он под действием силового поля приобретает ускорение, и направление его движения не может точно следовать по направлению силовых линий, он будет двигаться в направлении вектора количества движения.

Магнитное поле (см. МАГНИТНОЕ ПОЛЕ) характеризуют линии магнитной индукции, в любой точке которых вектор магнитной индукции направлен по касательной.

Линии магнитной индукции магнитного поля прямого проводника с током представляют собой окружности, лежащие в плоскостях, перпендикулярных проводнику. Центры окружности находятся на оси проводника. Силовые линии вектора магнитной индукции всегда замкнуты, т. е. магнитное поле является вихревым. Железные опилки, помещенные в магнитное поле, выстраиваются вдоль силовых линий; благодаря этому можно экспериментально определять вид силовых линий магнитной индукции. Вихревое электрическое поле, порождаемое изменяющимся магнитным полем, также имеет замкнутые силовые линии.

№27

Максвелл заложил основы современнойклассической электродинамики (уравнения Максвелла), ввёл в физику понятия тока смещения и электромагнитного поля, получил ряд следствий из своей теории (предсказание электромагнитных волн, электромагнитная природа света, давление света и другие). Он является одним из основателей кинетической теории газов, установил распределение молекул газа по скоростям (распределение Максвелла). Максвелл одним из первых ввёл в физику статистические представления, показал статистическую природу второго начала термодинамикидемон Максвелла»), получил ряд важных результатов в молекулярной физике и термодинамике (термодинамические соотношения Максвелла, правило Максвелла для фазового перехода жидкость — газ и другие). Он является пионером количественной теории цветов, автором принципа цветной фотографии. Среди других работ Максвелла — исследования по устойчивости колец Сатурна, теории упругости и механике (фотоупругость, теорема Максвелла), оптике, математике. Он подготовил к публикации рукописи работ Генри Кавендиша, много внимания уделял популяризации науки, сконструировал ряд научных приборов.

№28

Экспериментальное подтверждение Герцем теории Максвелла Первое экспериментальное подтверждение электромагнитной теории Максвелла было дано в опытах Г. Герца в 1887 г., через восемь лет после смерти

Максвелла. Для получения электромагнитных волн Герц применил прибор, состоящий из двух стержней, разделенных искровым промежутком (вибратор Герца). При определенной разности потенциалов в промежутке между ними возникала искра – высокочастотный разряд, возбуждались колебания тока и излучалась электромагнитная волна. Для приема волн Герц применил резонатор – прямоугольный контур с промежутком, на концах которого укреплены небольшие медные шарики.

На опыте удалось также измерить скорость электромагнитных волн, которая оказалась равной скорости света в вакууме. Эти результаты являются одним из веских доказательств правильности электромагнитной теории Максвелла, согласно которой свет представляет собой электромагнитную волну.

№29

К годам работы в Кембридже относится и первый серьёзный интерес Максвелла к проблеме электричества. Вскоре после сдачи экзамена, в феврале 1854 года,

он обратился к Уильяму Томсону с просьбой порекомендовать литературу по этой тематике и порядок её чтения[18]. В то время, когда Максвелл приступил к исследованию электричества и магнетизма, существовали два взгляда на природу электрических и магнитных эффектов. Большинство континентальных учёных, таких как Андре Мари Ампер, Франц Нейман (англ. Franz Ernst Neumann) иВильгельм Вебер, придерживались концепции дальнодействия,

рассматривая электромагнитные силы как аналог гравитационного притяжения между двумя массами, которые мгновенно взаимодействуют на расстоянии.

Электродинамика, развитая этими физиками, представляла собой оформившуюся и строгую науку[19]. С другой стороны, Майкл Фарадей, первооткрыватель явления электромагнитной индукции, выдвинул идею силовых линий, которые соединяют положительный и отрицательный электрические заряды или северный и южный полюсы магнита. Согласно Фарадею, силовые линии заполняют всё окружающее пространство, формируя поле, и обусловливают электрические и магнитные взаимодействия. Максвелл не мог принять концепцию действия на расстоянии, она противоречила его физической интуиции[20],

поэтому вскоре он перешёл на позиции Фарадея:

Когда мы наблюдаем, что одно тело действует на другое на расстоянии, то, прежде чем принять, что это действие прямое и непосредственное,

мы обыкновенно исследуем, нет ли между телами какой-либо материальной связи… Кому свойства воздуха не знакомы, тому передача силы

посредством этой невидимой среды будет казаться столь же непонятной, как и всякий другой пример действия на расстоянии… Не следует

смотреть на эти [силовые] линии как на чисто математические абстракции. Это направления, в которых среда испытывает напряжение,

подобное натяжению верёвки…[21]

Фарадей, придя к ней самостоятельно, стал думать о том, как экспериментально обнаружить его. Ему удалось обеспечить действие тока лишь на один из полюсов магнита и с помощью ртутного контакта осуществить непрерывное вращение магнита вокруг проводника с током.

Этот первый электродвигатель заработал у фарадея в декабре 1821 г. Тогда же фарадей записал в своем дневнике задачу: превратить магнетизм в электричество. Решение этой задачи потребовало около десяти лет. С ноября 1831 г. Фарадей начал систематическую публикацию своих исследований по электричеству, составивших трехтомный труд под заглавием «Экспериментальные исследования по электричеству».

Дадим краткий обзор содержания этой знаменитой книги. В первой серии, датированной 24 ноября 1831 г. и содержащей разделы: об индукции электрических токов, об образовании электричества и магнетизма, о новом электрическом состоянии материи, объяснение магнитных явлений Араго,— описаны основные опыты фарадея по электромагнитной индукции. В первом опыте, с помощью которого и было открыто новое явление, фарадей использовал деревянный цилиндр, на который были намотаны две изолированные друг от друга обмотки. Одна из них была соединена с гальванической батареей, другая — с гальванометром. При замыкании и размыкании тока в первой обмотке стрелка гальванометра во второй обмотке отклонялась при замыкании тока в одну сторону, при размыкании в противоположную. Действие одной цепи электрического тока на другую фарадей назвал вольтаэлектрической индукцией. Вольта-электрическая индукция усиливалась, если внутрь обмотки помещали железо, фарадей устроил индукционный прибор в виде железного кольца (тора), на которое были намотаны две изолированные обмотки — первичная с источником тока и вторичная с гальванометром. Кольцо фарадея было первой моделью трансформатора.

Затем Фарадей получил индукционные действия с помощью обыкновенных магнитов. Явления эти фарадей назвал магнитоэлектрической индукцией. фарадей считал, что проводник, подвергающийся индукционному воздействию со стороны другого тока или магнита, находится в особом состоянии, которое он назвал электротоническим. Это название не удержалось в науке, но именно отсюда началось исследование фарадеем роли среды в электромагнитных взаимодействиях.

Существенно, что Фарадей, отмечая переменный характер процесса индукции, говорит об «индуцированной волне электричества». Несколькими месяцами позже, 12 марта 1832 г., он фиксировал результат своих наблюдений над временным характером индукционных явлений в специальном письме, озаглавленном «Новые воззрения, подлежащие в настоящее время хранению в запечатанном конверте в архивах Королевского общества». В этом замечательном письме, обнаруженном в архивах лишь спустя 106 лет, т. е. в 1938 г., содержится совершенно определенный вывод, «что на распространение магнитного взаимодействия требуется время», что действие одного магнита на другой «распространяется от магнитных тел постепенно и для своего распространения требует определенного времени». фарадей указывает, «что электрическая индукция распространяется точно таким же образом», и считает «возможным применить теорию колебаний к распространению электрической индукции». Процесс распространения индукции похож «на колебания взволнованной водной поверхности или же на звуковые колебания частиц воздуха». фарадей пишет, что он хотел бы проверить свои идеи экспериментально, но ввиду занятости решил передать свое письмо на хранение, чтобы закрепить за собой открытие фиксированной датой. Он указывает, что «в настоящее время, насколько мне известно, никто из ученых, кроме меня, не имеет подобных взглядов».

Поразительна интуиция Фарадея, позволившая ему вскоре после открытия электромагнитной индукции прийти к идее электромагнитных волн. Он совершенно прав, считая эту идею чрезвычайно важной и утверждая свой приоритет в специальном письме, датированном точной датой.

ГЕРЦ

 

Основное достижение —

экспериментальное подтверждение электромагнитной теории света Джеймса Максвелла. Герц доказал

существование электромагнитных

волн. Он подробно исследовал отражение, интерференцию, дифракцию и поляризацию электромагнитных волн,

доказал, что скорость их распространения совпадает со скоростью распространения света, и что светпредставляет собой не что иное, как разновидность электромагнитных волн. Он построил электродинамику движущихся тел, исходя из гипотезы о том, что эфир увлекается движущимися телами. Однако его теория электродинамики не подтвердилась опытами и позднее уступила место электронной теории Хендрика Лоренца. Результаты, полученные Герцем, легли в основу развития радио.

С 1885 по 1889 годы Герц работал профессором физики технического университета в Карлсруэ. Именно в эти годы он провёл свои знаменитые опыты по

распространению электрической силы, доказавшие реальность электромагнитных волн. Аппаратура, которой пользовался Герц, может показаться теперь

более чем простой, но тем замечательнее полученные им результаты. Источниками электромагнитного излучения у него были искры в разрядниках.

Электромагнитные волны от разрядников вызывали искровые разряды между шариками в «приемниках» — расположенных в нескольких метрах контурах,

настроенных в резонанс. Герцу удалось не только обнаружить волны, в том числе, и стоячие, но и исследовать скорость их распространения, отражение,

преломление и даже поляризацию. Все это очень напоминало оптику, с тем только (весьма существенным!) отличием, что длины волн были почти в миллиард

раз больше.

Экспериментальный аппарат Герца 1887 года.

Радиопередатчик Герца на основе катушки Румкорфа (с ударным возбуждением колебательного контура ключевым прерывателем).

Постоянный ток от источника, проходя через катушку намагничивает её железный сердечник, он притягивает подвижной контакт и цепь разрывается, когда магнитное поле исчезает контакт замыкается снова.[9] Для проведения опытов Герц придумал и сконструировал свой знаменитый излучатель

электромагнитных волн, названный впоследствии «вибратором Герца». Вибратор представлял собой два медных прутка с насаженными на концах латунными

шариками и по одной большой цинковой сфере или квадратной пластине, играющей роль конденсатора. Между шариками оставался зазор — искровой

промежуток. К медным стержням были прикреплены концы вторичной обмотки катушки Румкорфа — преобразователя постоянного тока низкого напряжения

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]