Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Molekuljarnaja Biologija Kletki v1

.pdf
Скачиваний:
32
Добавлен:
10.02.2015
Размер:
26.8 Mб
Скачать

401

от ионных каналов любых типов клеток, включая и электрически невозбудимые. Многие из этих клеток, например дрожжевые, слишком малы, чтобы исследовать их традиционным методом электрофизиологов - введением внутриклеточных электродов.

Регистрация сигналов методом patch-clamp показала, что индивидуальные Na+-каналы открываются по принципу «все или ничего». В открытом состоянии их проводимость не меняется, а времена открывания и закрывания случайны. Поэтому суммарный ток, протекающий через большую популяцию Na+-каналов мембраны целой клетки дает представление не о степени открытия индивидуального канала, а лишь о средней вероятности того, что он открыт (рис. 6-61).

Явление потенциал-зависимого открывания и закрывания можно понять исходя из простых физических принципов. Внутри покоящейся нервной или мышечной клетки электрический потенциал на 50100 мВ ниже, чем снаружи. Такая разность потенциалов на двух сторонах мембраны может показаться незначительной, однако, учитывая, что толщина мембраны составляет всего лишь около 5 нм, градиент оказывается равным примерно 100 000 В/см. Следовательно, мембранные белки находятся в очень сильном электрическом поле. Естественно, мембранные белки, как и все другие, содержат на своей поверхности некоторое количество заряженных групп. Электрическое поле увеличивает силы, действующие на структуру молекулы. На многие мембранные белки изменения электрического поля через мембрану не оказывают значительного влияния. Ионные каналы, однако, приобрели в процессе эволюции тонкую сбалансированную чувствительность к электрическому полю: они могут принимать несколько альтернативных конформаций, стабильность которых зависит от величины электрического поля. Малые возмущения не отражаются на конформации каналов, но при достаточно сильных воздействиях, например случайных тепловых движениях окружающих молекул, может произойти и переход к другой конформации (см. рис. 6-58).

Функции потенциал-зависимых Na+-каналов специфически блокируются двумя паралитическими ядами: тетродотоксином (ТТХ), получаемым из иглобрюхих рыб и сакситоксином, который выделяют из определенных видов морских динофлагеллят. Из-за высокой аффинности и специфичности эти токсины оказались незаменимыми для фармакологических исследований, подсчета числа Na+-каналов в мембране и для очистки этих каналов. Было показано, что в плазматической мембране клеток скелетных мышц находится лишь несколько сотен Na+ -каналов на 1 мкм2, т.е. один канал на 10 000 молекул фосфолипидов. Несмотря на такую малую плотность каналов, эти мембраны электрически возбудимы, поскольку каждый канал обладает высокой проводимостью, пропуская более 8000 ионов за 1 миллисекунду.

В 1984 году была определена нуклеотидная последовательность ДНК, детерминирующая образование потенциал-зависимого Na+ -канала (у угря). Установлено, что она кодирует одну длинную полипептидную цепь (около 1800 аминокислотных остатков), содержащую четыре гомологичных трансмембранных домена (каждый из которых имел в своем составе шесть предполагаемых α-спиралей, пронизывающих мембрану). Эти спирали, по-видимому, взаимодействуют друг с другом, образуя стенки поры, заполненной водой. Совсем недавно был секвенирован ген, кодирующий потенциал-зависимый Са2+-канал. Оказалось, что это также длинный полипептид, первичная структура которого высоко гомологична обнаруженной для Na+-канала. Весьма вероятно, что потенциал-зависимые ионные каналы относятся к семейству эволюционно и структурно родственных белков. В каждом из этих каналов один из

Рис. 6-60. Запись сигналов методом patch-clamp. Благодаря плотному соединению между микропипеткой и мембраной ток может течь только через каналы, имеющиеся в участке мембраны, закрывающей кончик пипетки. Запись протекающего тока можно сделать как в случае А (в интактной клетке), так и в случае Б (удалив участок мембраны). Преимущества варианта Б состоят в легкости изменения условий с любой стороны мембраны для изучения воздействия различных растворов на поведение канала. Ориентацию удаленного участка мембраны можно изменить на противоположную (см. также рис. 4-33 и 4-34).

402

Рис. 6-61. Запись тока, протекающего через единичный потенциал-зависимый Na +-канал, находящийся в крошечном участке плазматической мембраны мышечной клетки эмбриона крысы (см. рис. 6-60). Мембрану деполяризуют импульсом (А). Три графика тока (Б) получены в трех экспериментах с одним и тем же участком мембраны. Каждое существенное изменение тока соответствует открытию и закрытию одного канала. Сравнение показывает, что время открытию и закрытию может существенно варьировать, при этом скорость протекания зарядов через канал остается практически постоянной. Маленькие флуктуации при записи тока являются электрическим шумом записывающей аппаратуры. Суммарный ток, записанный в 144 повторяющихся экспериментах, показан на В. Он эквивалентен току Na+ через относительно большой участок мембраны, содержащий 144 канала. Сравнение Б и В показывает, что суммарный ток отражает вероятность открывания индивидуального канала. Эта вероятность со временем уменьшается, так как каналы деполяризованной мембраны переходят в инактивированную конформацию. Кинетика открывания и инактивации каналов мышечной клетки эмбриона намного медленнее, чем у типичной нервной клетки. (По данным J. Patlak и R. Horn, J. Gen. Physiol., 79, 333-351, 1982, с разрешения Rockefeller University Press.)

предполагаемых трансмембранных сегментов содержит положительно заряженные аминокислотные остатки, разделенные между собой регулярными промежутками. Не исключено, что эти остатки вместе обладают функцией сенсора потенциала, обеспечивая открывание канала в ответ на достаточную деполяризацию мембраны (см. рис. 6-58).

Намного больше известно о структуре другого класса ионных каналов, открывающихся в ответ на связывание специфических нейротрансмиттеров, а не на изменения мембранного потенциала. Эти трансмиттер-зависимые ионные каналы также принадлежат к одной группе родственных белков. Однако в отличие от потенциал-зависимых Na + - и Са2+-каналов, каждый из которых образован одной длинной полипептидной цепью, все изученные трансмиттер-зависимые ионные каналы построены из нескольких гомологичных субъединиц.

6.4.18. Ацетилхолиновый рецептор - это трансмиттер-зависимый катионный канал [35]

Трансмиттер-зависимые ионные каналы приспособлены для превращения внеклеточных химических сигналов в электрические сигналы. Они располагаются обычно в специализированных соединениях (называемых химическими синапсами), расположенных между нервными клетками и клетками-мишенями. Эти каналы концентрируются на плазматической мембране клетки-мишени в области синапса. Каналы способны открываться на некоторое время в ответ на связывание нейротрансмиттера, высвобождаемого нервным окончанием. При этом меняется проницаемость постсинаптической мембраны клетки-мишени (рис. 6-62). В отличие от потенциал-зависимых каналов, ответственных за возникновение потенциалов действия, трансмиттер-зависимые каналы относительно нечувствительны к мембранному потенциалу и поэтому неспособны к самоусиливающемуся возбуждению. Вместо этого они изменяют проницаемость мембраны и, следовательно, влияют на мембранный потенциал. Величина этого изменения зависит от того, сколько трансмиттера высвободилось в синапсе и в течение какого времени он там присутствует. Ясно, что потенциал действия может возникнуть только при условии, что потенциал-зависимые каналы также присутствуют в этой же мембране клетки-мишени.

Кроме характерной ионной селективности каждый трансмиттер-зависимый канал обладает высокоспецифичным участком связывания

своего

403

Рис. 6-62. Химический синапс. Приходящий к нервному окончанию потенциал действия стимулирует высвобождение нейротрансмиттера, содержащегося в секреторных пузырьках и высвобождаемого из клетки при слиянии пузырьков с плазматической мембраной нервного окончания. Высвобожденный нейротрансмиттер связывается с трансмиттер-зависимыми ионными каналами, сконцентрированными на плазматической мембране постсинаптической клетки, и открывает их. В результате тока ионов изменяется мембранный потенциал клетки-мишени. Таким образом происходит передача нервного сигнала.

Рис. 6-63. Три конформации ацетилхолинового рецептора. Связывание двух молекул ацетилхолина открывает ворота трансмиттер-зависимого ионного канала. Но, по-видимому, даже при связанном ацетилхолине рецептор остается открытым непродолжительное время, а затем закрывается. Ацетилхолин отсоединяется от рецептора, возвращая его в первоначальное состояние.

нейротрансмиттера. Примером наиболее изученного трансмиттер-зависимого канала может служить ацетилхолиновый рецептор клеток скелетных мышц. Этот канал временно открывается при действии ацетилхолина, нейротрансмиттера высвобождаемого из нервного окончания в нервно-мышечное соединение (см. разд. 19.3.1). Ацетилхолиновый рецептор занимает особое место в истории изучения ионных каналов. Он был первым ионным каналом, выделенным в чистом виде, именно у него впервые была определена полная аминокислотная последовательность, ацетилхолиновый рецептор оказался первым каналом, для которого удалось добиться функциональной активности после реконструкции в синтетическом липидном бислое, и, наконец, первым каналом, у которого был записан электрический сигнал, получаемый при открывании одного канала. Ген этого канала также оказался первым из генов белков-каналов, которые были выделены, клонированы и секвенированы. Успех в изучении этого рецептора стал возможен по двум по крайней мере причинам. Во-первых, существует необычайно богатый источник для его выделения из электрических органов электрических рыб и скатов. Эти органы представляют собой модифицированные мышцы, приспособленные для того, чтобы вызвать у жертвы электрический шок. Во-вторых, некоторые нейротоксины типа α-бунгаротоксина из яда определенных змей с высокой эффективностью а = 109 л/моль) и специфичностью связываются с этим рецептором и могут быть использованы для его очистки методом аффинной хроматографии. Благодаря применению флуоресцентно или радиоактивно меченного α-бунгаротоксина показано, что ацетилхолиновые рецепторы плотно упакованы в плазматической мембране мышечных клеток в месте нейромышечного соединения (около 20000 рецепторов на мкм2), а в других местах той же мембраны находится лишь несколько таких рецепторов.

Ацетилхолиновый рецептор представляет собой гликопротеин, состоящий из пяти трансмембранных полипептидов. Два из них принадлежат к одному типу, а три остальных - к другому. Они кодируются четырьмя различными генами. Поскольку четыре этих гена обнаруживают тесную гомологию, предполагают, что все они произошли от одного гена-предшественника. Два идентичных полипептида в пентамере имеют участки связывания ацетилхолина. При связывании двух молекул трансмиттера с пентамерным комплексом происходит индуцированное конформационное изменение, приводящее к открыванию канала. Канал открывается примерно на 1 миллисекунду, а затем опять закрывается. По-видимому, как и для потенциал-зависимого Na +-канала, открытая форма является короткоживущей и быстро переходит в закрытое состояние с меньшей свободной энергией (рис. 6-63). После

404

Рис. 6-64. Одна из моделей образования трансмембранной поры, заполненной водой, из пяти гомологичных субъединиц (α, α, β, γ, δ) ацетилхолинового рецептора (А). Обратите внимание, что обе α-субъединицы содержат участок связывания ацетилхолина и что основная масса рецептора находится во внеклеточном пространстве. Каждая субъединица состоит из ~500 аминокислотных остатков. Мг рецептора ~ 300 000 Да. Предполагается, что полипептидная цепь каждой субъединицы пересекает липидный бислой в виде четырех α-спиралей (Б). Одна из спиралей (показана в цвете) содержит более полярные аминокислотные остатки, чем другие. Она, видимо, и входит в состав стенки водяной поры при объединении пяти субъединиц (А).

этого молекулы ацетилхолина диссоциируют из комплекса с рецептором и гидролизуются специфическим ферментом (ацетилхолинэстеразой). Освободившись от связанного нейротрансмиттера, ацетилхолиновый рецептор возвращается к исходному состоянию покоя.

Для изучения структуры ацетилхолинового рецептора были использованы методы электронной микроскопии и малоугловой дифракции рентгеновских лучей, однако точный ответ на вопрос, как образуется трансмембранный гидрофильный канал, до сих пор не получен. Было предложено несколько моделей, основанных главным образом на аминокислотной последовательности субъединиц. Одна из моделей представлена на рис. 6-64. То, что кластеры отрицательно заряженных аминокислотных остатков выстилают отверстие канала, объясняет, по-видимому, известный факт, что отрицательно заряженные ионы не способны проходить через канал, а положительно заряженные ионы с размером до 0,65 нм могут это делать. Через канал проходят преимущественно ионы Na+ и К+, а также некоторое количество Са2+. Строгих ограничений на вид катионов не существует, поэтому поток каждого из них через канал определяется главным образом их концентрациями и электрохимическими движущими силами. Так как градиент напряжения уравновешивает градиент концентрации К+ через мембрану при наличии потенциала покоя, то и движущая сила для ионов К+ близка к нулю (см. схему 6-2). Напротив, для ионов Na+ как градиент напряжения, так и градиент концентрации действуют в одном направлении, способствуя движению ионов внутрь клетки. Это же справедливо и для Са2+ , но его внеклеточная концентрация намного меньше концентрации ионов натрия, и, следовательно, вклад Са2+ в общий ток ионов незначителен. Поэтому открывание ацетилхолиновых рецепторных каналов приводит к большому притоку ионов Na2+ (максимальная скорость притока составляет около 30 000 ионов на 1 канал за 1 миллисекунду). Этот ток вызывает деполяризацию мембраны, что служит сигналом для мышечного сокращения, как описано ниже.

Ранее были определены также последовательности нуклеотидов

405

ДНК, кодирующие субъединицы нескольких разны трансмиттер-зависимых ионных каналов. Выведенные из них аминокислотные последовательности гомологичны друг другу и соответствующим субъединицам ацетилхолинового рецептора, что говорит об эволюционном родстве этих ионных каналов.

6.4.19. Нервно-мышечная передача включает в себя последовательную активацию по крайней мере четырех различных наборов воротных каналов [36]

Исключительную роль ионных каналов, имеющих «ворота» (или воротных каналов) для работы электрически возбудимых клеток, можно проиллюстрировать на примере стимуляции мышечной клетки к сокращению приходящим нервным импульсом. Этот с виду простой ответ состоит из последовательного открывания и закрывания по крайней мере четырех различных наборов каналов, имеющих ворота, и все это происходит менее чем за 1 секунду (рис. 6-65).

1.Процесс начинается, когда нервный импульс достигает нервного окончания и деполяризует его плазматическую мембрану. Деполяризация открывает на время потенциал-зависимые воротные Са2+-каналы в этой мембране. Поскольку концентрация Са2+ снаружи клетки более чем в 1000 раз превышает концентрацию свободного Са2+ в клетке, ионы кальция устремляются внутрь нервного окончания. Увеличение концентрации Са2+ в цитозоле нервного окончания стимулирует локальное высвобождение ацетилхолина в синаптическую щель.

2.Высвобожденный ацетилхолин связывается с ацетилхолиновыми рецепторами на плазматической мембране постсинаптической мышечной клетки. Это вызывает временное открывание катионных каналов рецепторов. В результате приток Na+ приводит к локальной деполяризации мембраны мышечной клетки.

3.Деполяризация плазматической мембраны мышечной клетки открывает ворота потенциал-зависимых Na+-каналов этой мембраны, способствуя засасыванию еще большего количества ионов Na+ . Таким образом происходит усиление деполяризации мембраны. Это в свою очередь приводит к тому, что открываются следующие потенциал-зависимые Na+-каналы и в конце концов возникает волна деполяризации (потенциал действия), которая распространяется до тех пор, пока не охватит всю мышечную мембрану.

4.Общая деполяризация плазматической мембраны мышечной клет-

Рис. 6-65. Схема нервно-мышечного соединения, показывающая, как некоторые имеющие ворота каналы участвуют в стимуляции мышечного сокращения нервным импульсом. Каналы пронумерованы в той последовательности, в которой они открываются (см. текст). Механизм открывания Са2+-каналов в саркоплазматическом ретикулуме неизвестен.

406

ки приводит к временному открытию Са2+-каналов в мембранах саркоплазматического ретикулума и высвобождению Са2+ в цитозоль. В результате происходит повышение внутриклеточной концентрации Са2+, вызывающее сокращение миофибрилл в мышечной клетке (см. разд. 11.1.11). Пока неизвестно, каким образом изменения напряжения на мышечной плазматической мембране служат сигналом для открывания потенциал-зависимых Са2+-каналов в мембране саркоплазматического ретикулума. Другая возможность связана с тем, что деполяризация мышечной плазматической мембраны активирует медиаторные пути передачи сигнала с помощью инозитолфосфолипида, что обсуждается в гл. 12.

6.4.20. Ионофоры повышают ионную проницаемость мембран [37]

Ионофоры - это небольшие гидрофобные молекулы, которые растворяются в липидных бислоях и повышают их проницаемость для ионов. Большинство ионофоров синтезируется микроорганизмами (вероятно, в качестве оружия против своих конкурентов), некоторые из них используются как антибиотики. Ионофоры широко применяются в клеточной биологии для повышения проницаемости мембран по отношению к определенным ионам в исследованиях на синтетических бислоях, клетках и клеточных органеллах. Существуют два класса ионофоров -

подвижные переносчики ионов и каналообразующие ионофоры (рис. 6-66). Ионофоры обоих типов действуют, экранируя заряд транспортируемого иона так, чтобы последний мог пройти гидрофобную внутреннюю область липидного бислоя. Поскольку ионофоры не связаны ни с какими источниками энергии, они лишь позволяют ионам двигаться по их электрохимическим градиентам.

Примером подвижного переносчика ионов может служить валиномицин. Он представляет собой полимер, повышающий проницаемость мембраны для ионов К+ . Валиномицин имеет кольцеобразную структуру. Наружная гидрофобная часть его молекулы состоит из боковых цепей валина и контактирует с углеводородной сердцевиной липидного бислоя. Во внутренней полярной области как раз может поместиться один ион калия (рис. 6-67). Валиномицин переносит К+ по его электрохимическому градиенту, он захватывает этот ион с одной стороны мембраны, диффундирует с ним через бислой и высвобождает его на другой стороне.

Еще один пример подвижного переносчика ионов-ионофор А23187, который транспортирует двухвалентные катионы, такие, как Са2+ и Mg2+ . Этот ионофор обычно действует как ионообменный «челнок»: на каждый двухвалентный катион, вносимый им в клетку, он удаляет два иона Н+ из клетки. Если клетки подвергнуть действию ионофора А23187, ионы Са2+ устремляются в цитозоль по крутому электрохимическому градиенту. Поэтому ионофор А23187 широко используют в клеточной биологии для повышения концентрации свободного Са2+ в цитозоле, моделируя, таким образом, определенные медиаторные механизмы передачи сигнала в клетке (см. разд. 12.3.10).

Если температура мембраны опускается ниже точки ее замерзания, подвижные переносчики уже не могут диффундировать через липидный бислой, и ионный транспорт прекращается. Наличие такой температурной зависимости свидетельствует о том, что данный ионофор - это подвижный переносчик. Если же транспорт ионов продолжается даже в замороженном бислое, можно сделать вывод, что его осуществляет каналообразующий ионофор.

Примером ионофора такого типа является грамицидин А. Он представляет собой линейный полипептид, состоящий из 15 аминокислотных

Рис. 6-66. Подвижный переносчик ионов и каналообразующий ионофор. В обоих случаях поток ионов проходит через мембрану только по электрохимическому градиенту.

Рис. 6-67. Молекула валиномицина, связанная с расположенным в центре кольцевой структуры ионом К+ при помощи шести атомов кислорода.

407

остатков, все они имеют гидрофобные боковые цепи. Две молекулы грамицидина, вероятно, объединяются в бислое и формируют трансмембранный канал, позволяющий моновалентным катионам (Н+ наиболее легко, К+ менее, a Na+ с трудом) перетекать по их электрохимических градиентам. Подобные димеры нестабильны: они постоянно образуются и диссоциируют, так что время, в течение которого канал открыт, составляет в среднем 1 с. При наличии большого электрохимического градиента грамицидин А поможет пропустить около 20 000 катионов в расчете на один открытый канал за 1 миллисекунду, что в 1000 раз больше, чем может перенести за то же время одна молекула подвижного переносчика. Грамицидин - это антибиотик, вырабатываемый определенными штаммами бактерий для уничтожения других микроорганизмов. Его антибактериальное действие основано на том, что он нарушает нормальные градиенты концентраций Н+ , Na+ и К+ , чрезвычайно важные для жизнедеятельности клеток.

Заключение

Липидные бислои в значительной степени не проницаемы для большинства полярных молекул. Для транспортировки малых водорастворимых молекул в клетку или из клетки в плазматических мембранах содержится большое число различных транспортных белков, каждый из которых ответствен за перенос определенного вещества через мембрану. Существуют два класса мембранных транспортных белков - переносчики и каналы. И те и другие формируют сквозные транспортные пути через липидный бислой.

Белки-переносчики связывают специфические вещества и переносят их через бислой, подвергаясь ряду конформационных изменений, позволяющих экспонировать связывающие вещество участки последовательно: сначала с одной стороны мембраны, а затем с другой. Некоторые белки-переносчики транспортируют вещества только «с горки», другие же, испытывая ряд конформационных изменений, вызываемых гидролизом АТР или связыванием ионов, способны работать как насосы, активно качая связывающееся с ними растворенное вещество «в горку» против его электрохимического градиента.

Белки-каналы образуют в бислое заполненные водой поры, позволяя, таким образом, неорганическим ионам подходящего размера и заряда перемещаться через мембрану по их электрохимическим градиентам. Скорость прохождения в этом случае по крайней мере в 1000 раз выше, чем при транспорте с помощью белков-переносчиков. Эти ионные каналы имеют «ворота» и обычно открываются на короткое время в ответ на специфические возбуждения в мембране, такие, как связывание нейротрансмиттеров (нейротрансмиттер-зависимые воротные каналы) или изменение мембранного потенциала (потенциал-зависимые воротные каналы) .

6.5. Перенос через мембрану макромолекул и частиц: экзоцитоз и эндоцитоз

Транспортные белки опосредуют проникновение через клеточные мембраны многих полярных молекул небольшого размера, однако они не способны транспортировать макромолекулы, например белки, полинуклеотиды или полисахариды. Тем не менее в большинстве клеток макромолекулы могут как поглощаться, так и секретироваться, а некоторые специализированные клетки способны захватывать даже крупные частицы. Механизмы, с помощью которых клетки осуществляют эти процессы, сильно отличаются от механизмов, опосредующих транспорт

408

Рис. 6-68. Слипание и объединение бислоев при экзоцитозе и эндоцитозе. Внеклеточное пространство находится сверху; оно отделено от цитоплазмы (снизу) плазматической мембраной. Обратите внимание, что из-за наличия стадии слипания бислоев экзоцитоз и эндоцитоз не повторяют друг друга в обратном порядке: при экзоцитозе слипаются два монослоя плазматической мембраны, обращенные к цитоплазме, тогда как при эндоцитозе два наружных монослоя мембраны. В обоих случаях сохраняется асимметрический характер мембран и монослой, обращенный к цитоплазме, всегда контактирует с цитозолем.

небольших молекул и ионов. При переносе макромолекул происходит последовательное образование и слияние окруженных мембраной пузырьков (везикул). Например, для того чтобы секретировать инсулин, клетки, продуцирующие этот гормон, упаковывают его в специализированные секреторные пузырьки. В ответ на внеклеточные сигналы эти пузырьки сливаются с плазматической мембраной и открываются во внеклеточное пространство, высвобождая при этом инсулин. Подобный процесс слияния называется экзоцитозом. Клетки способны также поглощать макромолекулы и частицы, используя сходный механизм, только в обратной последовательности. Поглощенное вещество постепенно окружается небольшим участком плазматической мембраны, который сначала впячивается, а затем отщепляется, образуя внутриклеточный пузырек, содержащий захваченный клеткой материал. Этот процесс называется эндоцитозом. Процессы экзоцитоза и эндоцитоза представлены для сравнения на рис. 6-68. Оба механизма включают слияние первоначально разделенных участков липидного бислоя и осуществляются по крайней мере в две стадии: на первой два бислоя склеиваются (слипание бислоев), а затем сливаются (слияние бислоев). Обе стадии, по-видимому, опосредуются специализированными белками, что будет обсуждаться ниже (см. разд. 6.5.16).

Важная особенность как экзоцитоза, так и эндоцитоза заключается в том, что секретируемые или поглощаемые макромолекулы локализуются в пузырьках и обычно не смешиваются с другими макромолекулами или органеллами клетки. Пузырьки могут сливаться только со специфическими мембранами, что обеспечивает направленный перенос макромолекул между внеклеточным пространством и содержимым клетки. Аналогичный процесс осуществляется во время переноса новосинтезированных макромолекул из эндоплазматического ретикулума в аппарат Гольджи и затем к другим компартментам клетки (см. гл. 8). Хотя ясно, что быстрое и повсеместное образование и слияние пузырьков - это фундаментальная особенность всех эукариотических клеток, молекулярные механизмы, обеспечивающие приведение в действие и направление этого транспорта по специфическим путям, во многом еще требуют изучения.

6.5.1. Существуют два пути экзоцитоза - конститутивный и регулируемый [38]

Во всех эукариотических клетках транспортные пузырьки непрерывно переносят новые компоненты плазматической мембраны из аппарата Гольджи к плазматической мембране посредством экзоцитоза. В то же время клетки секретируют различные типы молекул с помощью процесса экзоцитоза. Некоторые из этих молекул могут оставаться на поверхности клетки и становятся частью клеточной мембраны, другие выходят во внеклеточный матрикс. При этом часть из них диффундирует во

409

внутритканевую жидкость и/или в кровь для питания или переноса сигнала к другим клеткам.

Как описано в гл. 8, секретируемые белки синтезируются на рибосомах, связанных с мембранами шероховатого эндоплазматического ретикулума (ЭР). Эти белки проходят в полость ЭР и транспортируются к аппарату Гольджи с помощью отпочковавшихся от ЭР транспортных пузырьков. В аппарате Гольджи белки модифицируются, концентрируются, сортируются и затем упаковываются в пузырьки, которые отщепляются в цитозоль и в конце концов сливаются с мембраной. В отличие от макромолекул секретируемые молекулы малых размеров, например гистамин (см. ниже), активно транспортируются из цитозоля в уже сформировавшиеся пузырьки, где они зачастую связываются со специфическими макромолекулами (в случае гистамина - с протеогликанами) и в результате могут накапливаться в высокой концентрации, не создавая при этом чрезмерного осмотического градиента.

Некоторые белки непрерывно секретируются производящими их клетками. При этом они упаковываются в транспортные пузырьки в аппарате Гольджи и затем переносятся непосредственно к плазматической мембране. В этом случае говорят о конститутивном пути секреции. В других клетках определенные белки и/или малые молекулы запасаются в специальных секреторных пузырьках, которые сливаются с плазматической мембраной только после получения клетки соответствующего сигнала извне. Этот процесс носит название регулируемого пути секреции (рис. 6-69). Конститутивный путь осуществляется во всех клетках, а регулируемый путь обнаружен главным образом в клетках, приспособленных для секреции производимых ими веществ в зависимости от определенных потребностей. Обычно это гормоны, нейротрансмиттеры или переваривающие ферменты. В таких специализированных секреторных клетках сигналом к секреции часто служит химический медиатор, например, гормон, связывающийся с рецепторами на клеточной поверхности. В результате происходит активация рецепторов, которая генерирует внутриклеточный сигнал, зачастую включающий кратковременное повышение концентрации свободного Са2+ в цитозоле (см. разд. 12.3.7). С помощью неизвестного механизма этот сигнал (сигналы) инициирует процесс экзоцитоза, побуждая секреторные пузырьки к слиянию с плазматической мембраной и, таким образом, к высвобождению их содержимого во внеклеточное пространство.

В процессе экзоцитоза мембраны пузырьков объединяются с плазма-

Рис. 6-69. Два пути прохождения секретируемых белков. Некоторые секретируемые белки упаковываются в транспортные пузырьки и непрерывно секретируются (конститутивный путь). Другие содержатся в специальных секреторных везикулах и высвобождаются только в ответ на стимуляцию клетки внеклеточными сигналами (регулируемый путь). Конститутивный путь осуществляется во всех эукариотических клетках, тогда как регулируемый путь - только в клетках специализированных для секреции (секреторных клетках).

410

тической мембраной (см. рис. 6-68). По крайней мере в случае регулируемого пути белки и липидные компоненты секреторных мембран возвращаются позднее специфическим образом в первоначальное состояние посредством экзоцитоза, для того чтобы войти в состав новых секреторных пузырьков. Общая площадь мембраны секреторных пузырьков, временно включающейся в состав плазматической мембраны, может быть огромна: в ацинарной клетке поджелудочной железы, выделяющей пищеварительные ферменты, в состав апикальной плазматической мембраны (площадь которой составляет лишь 30 мкм2) при стимулировании клетки к секреции включается до 900 мкм2 везикулярной мембраны.

6.5.2. Регулируемый экзоцитоз - это локальный ответ плазматической мембраны и находящейся под ней цитоплазмы [39]

Тучные клетки секретируют гистамин (см. табл. 12-1) в ответ на связывание специфических лигандов с рецепторами на их поверхности. Именно гистамин, секретируемый тучными клетками ответствен за многие неприятные симптомы, такие, как зуд или чихание, сопровождающие аллергические реакции. Если тучные клетки проинкубировать в среде, содержащей растворимый стимулятор, то экзоцитоз наблюдается по всей клеточной поверхности (рис. 6-70). Если же стимулирующий лиганд искусственно связан с твердой гранулой, так что он может взаимодействовать только с небольшим участком поверхности тучной клетки, экзоцитоз ограничивается местом контакта с гранулой (рис. 6- 71). Ясно, что тучная клетка не отвечает на стимуляцию как нечто целое: активация рецепторов, внутриклеточные сигналы как результат этой активации и последующий экзоцитоз, очевидно, происходят лишь в том участке клетки, который подвергается стимуляции. Это свидетельствует о важном свойстве плазматической мембраны: отдельные ее участки могут функционировать независимо от остальной мембраны. Как мы видим, это свойство одинаково важно как для экзоцитоза, так и для эндоцитоза.

6.5.3. Существуют два вида эндоцитоза: пиноцитоз и фагоцитоз [40]

В зависимости от размера образующихся пузырьков различают два типа эндоцитоза: пиноцитоз (от греч. ріnо - пью + kitos - клетка), предполагающий поглощение жидкости и растворенных веществ с помощью небольших пузырьков (150 нм в диаметре), и фагоцитоз (от греч. phagos - пожирающий + kitos - клетка), означающий поглощение больших частиц, таких, как микроорганизмы или обломки клеток. В этом случае образуются крупные пузырьки, называемые фагосомами, или вакуолями (с диаметром, как правило, > 250 нм).

Жидкость и растворенные вещества непрерывно поглощаются большинством эукариотических клеток посредством пиноцитоза, тогда как большие частицы захватываются в основном специализированными клетками - фагоцитами. По этой причине для большинства клеток термины «пиноцитоз» и «эндоцитоз» обычно употребляются в одном и том же смысле.

Большинство частиц и молекул, поглощенных клеткой посредством фагоцитоза или пиноцитоза заканчивают свой путь в лизосомах. Большие частицы включаются в фагосомы, которые затем, видимо, сливаются с лизосомами, образуя фаголизосомы. Жидкость и макромолекулы, поглощенные при пиноцитозе, первоначально переносятся в проме-

Риc 6-70. Электронные микрофотографии, показывающие экзоцитоз в тучных клетках крысы. А. Клетка не подвергалась стимуляции. Б. Клетка активировалась внеклеточным лигандом с целью вызвать секрецию запасенного в ней гистамина. Пузырьки, содержащие гистамин, выглядят темными, а пузырьки, освободившиеся от него, - светлыми. То, что остается в пузырьках после секреции гистамина, представляет собой сеть из протеогликанов, с которыми в норме связан запасаемый гистамин. Если секреторный пузырек слился с плазматической мембраной, то его собственная мембрана часто служит после этого мишенью для слияния с другими секреторными пузырьками. Таким образом, множество секреторных пузырьков в тучных клетках открывается во внеклеточное пространство через другие открывшиеся пузырьки. В результате клетка (Б) содержит несколько больших полостей, образованных слившимися друг с другом мембранами множества опорожненных пузырьков, составляющих теперь с плазматической мембраной единое целое. Эти полости не всегда оказываются в одной плоскости сечения клетки. (По D. Lawson et al., J. Exp. Med., 142, 391-402, 1975, с разрешения Rockefeller University Press.)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]