
- •Лекция №1
- •Предмет геофизики
- •Разделы геофизики
- •Предмет, методы и задачи разведочной геофизики
- •Физические поля и аномалии
- •Понятия о геофизических аномалиях
- •Понятия об интерпретации в геофизике
- •Тема: Петрофизика – как отрасль знаний. Цели и задачи петрофизики
- •Три группы физических свойств
- •Измерения петрофизических параметров
- •Окраска карт
- •Специализированные карты
- •Петрофизические разрезы
- •Плотность минералов и горных пород. Плотность и пористость физических тел Плотность – это свойство вещества, характеризующиеся отношением его массы m к занимаемому объему V:
- •Плотность минералов
- •Упругие свойства минералов и горных пород Упругие параметры физических тел
- •Скорость упругих волн и упругие модули химических элементов и минералов
- •Лекция №3 Теплофизические параметры веществ и методы их измерения
- •Теплофизические параметры горных пород
- •Магнитные параметры физических тел
- •Магнитные свойства горных пород
- •Электрические свойства минералов и горных пород
- •Удельное электрическое сопротивление элементов и минералов
- •Электрические свойства горных пород
- •Ядерно-физические (радиоактивные) свойства минералов и горных пород Естественная радиоактивность
- •Радиоактивность минералов и горных пород.
- •Физические свойства пластовых вод, нефти и газа
- •Лекция №4 Тема: Использование данных гравиразведки при поисках месторождений углеводородов. Гравиразведка
- •Изучение поверхности и блокового строения фундамента
- •Способ кфс (квазидетерминированных функциональных связей)
- •Блоковое строение
- •Изучение соленосных отложений
- •Антиклинальные структуры
- •Неструктурные ловушки
- •Прогнозирование месторождений нефти и газа
- •Метод полного нормированного градиента
- •Методика «гонг»
- •Методика а.И.Волгиной. Прогнозирование залежей нефти и газа по вариациям силы тяжести.
- •Лекция № 5 Тема: Использование данных магниторазведки при поисках месторождений углеводородов. Аэромагниторазведка
- •Магниторазведочные работы на стадии выявления и подготовки объектов
- •Выявление и подготовка структурно-литологических ловушек, связанных с погребенными рифами
- •Выявление аномалий типа «залежь» по магнитному полю
- •Применение ядерно-геофизических методовпри изучении нефтегазоперспективных территорий.
- •Лекция № 6 Тема: Роль, задачи и принципы интерпретации данных электроразведки.
- •Электромагнитные профилирования
- •Методы естественных полей
- •Магнитотеллурические методы
- •Применение метода вызванной поляризации для прогнозирования нефтегазоносности.
- •Лекция № 7 Тема: Изучение литологических комплексов осадочной толщи методами электромагнитного зондирования
- •Общая характеристика результатов, полученных методом зсбз в Волго-Уральском регионе
- •Лекция № 8
- •Упругие волны в безграничном пространстве
- •Типы сейсмических волн
- •Годографы сейсмических волн
- •Скорости, изучаемые в сейсморазведке
- •Лекция №9 Тема: Обработка сейсморазведочных данных
- •Обратная задача
- •Стадии обработки сейсмических данных
- •Граф обработки
- •Прослеживание и стратификация сейсмических границ
- •Общие принципы корреляции
- •Определение сейсмических скоростей
- •Микросейсмокаротаж.
- •Вертикальное сейсмическое профилирование (всп)
- •Стратификация сейсмических скоростей
- •Составление и анализ сейсмических карт и схем
- •Оценка точности сейсмических построений
- •Тема: Динамическая интерпретация
- •Возможности амплитудного анализа данных мов
- •Качественная интерпретация амплитуд
- •Метод яркого пятна
- •Метод мгновенных динамических характеристик
- •Количественная интерпретация амплитуд
Скорость упругих волн и упругие модули химических элементов и минералов
Скорость продольных волн в минералах изменяется от 2000 до 18000 м/с, поперечных от 1100 до 10000 м/с. Низкие скорости характерны для самородных металлов (золото, платина), высокие – для алюмосиликатных и окисных безжелезистых минералов (топаз, шпинель, корунд), наибольшая скорость упругих волн установлена в алмазе.
Характер изменения
скорости упругих волн в элементах,
минералах и горных породах имеет два
типа связи между скоростью продольных
волн и плотностью твердых образований:
;
.
К первому типу относятся большинство твердых петрогенных элементов и породообразующие минералы (силикатные и частично окисные), состоящие преимущественно из элементов со структурой типа sp. Скорость упругих волн и плотность этих элементов в значительной степени зависят от плотности упаковки атомов в кристалле и его структуры. Плотность минералов первого типа составляет 0,5-4,5 г/см3, то есть они относятся к минералам с малой и средней плотностью. Скорость продольных волн изменяется от 1км/с до 18 км/с. Для первого типа по мере возрастания плотности минералов наблюдается увеличение скорости упругих волн, то есть прямая зависимость, несмотря на то, что плотность в формуле входит в знаменатель. Это как будто противоречит рассматриваемым формулам.
По мере возрастания плотности минералов наблюдается еще большее увеличение модуля Юнга и модуля сдвига. Это возрастание параметров связано, главным образом, с увеличением плотности упаковки атомов ω в кристаллах. Для породообразующих минералов ω изменяется от 72 до 94, а в алмазе достигает 176. В результате происходит увеличение скоростей. Для коэффициента Пуассона закономерных изменений не наблюдаются. Однако в формулы, определяющие скорости продольных и поперечных волн величина коэффициента Пуассона входит таким образом, что даже небольшие его вариации сильно сказываются на значения vPиvS . Наименьшие значения коэффициента Пуассона характерно для кварца (0,05-0,10). Пониженные значения σПсвойственны гематиту и пириту ( в среднем 0,15).
Ко второму типу относятся тяжелые металлы, сульфиды, окисные рудные минералы и самородные металлы, состоящие преимущественно из элементов со структурой типа d. В этих элементах и минералах существенное слияние на физические параметры оказывает атомная масса. Модуль Юнга и модуль сдвига, скорость упругих волн уменьшается с ростом плотности.
Скорости упругих волн в магматических и метаморфических породах.
Упругие характеристики магматических и метаморфических пород определяются в значительной мере:
химическим и минеральным составом;
текстурно-структурными особенностями;
характером порового заполнителя.
Основными химическими компонентами горных пород являются окислы кремния, калия, натрия, алюминия, кальция, магния и железа. Наименьшей скоростью упругих волн характеризуются породы, обогащение такими легкими окислами, как окислы кремния, калия, натрия. С уменьшением их содержания в породах возрастает содержание окислов кальция, магния, железа. Для ассоциаций горных пород, сложенных малоупругими минералами кислого состава (кварц, калиевой полевой шпат, альбит, олигоклаз) характерны минимальные скорости упругих волн. Максимальными скоростями обладают горные породы, представленные высокоупругими минералами основного состава (лабрадор, амфибол, пироксен, оливин). Таким образом, скорость упругих волн увеличивается с увеличением основности. То есть в ряду гранит-габбро-перидотит наблюдается возрастание средней скорости продольных и поперечных волн с ростом основности.
Однако следует заметить, что на упругие свойства горных пород воздействует множество факторов и не существует однозначной связи между геологическим определением породы и ее скоростной характеристикой. Породы сложенные одними и теми же минеральными ассоциациями могут отличаться по своим скоростям, так же как и совершенно разные породы могут иметь одинаковые значения скоростей. Поэтому обычно указываются пределы вероятных скоростей.
Для эффузивных пород характерен широкий диапазон значений скоростей, обусловленный различной пористостью, первоначальной структуры пород и их последующим диагенезом.
Для метаморфических пород в целом также наблюдается зависимость скорости упругих волн от минерального состава основности пород. При региональном метаморфизме скорость упругих волн возрастает от низших стадий метаморфизма к высшим за счет уплотнения пород.
Существенное влияние на скоростные характеристики оказывают гипергенные процессы, приводящие к росту трещиноватости и образованию структурно-рыхлых минералов. Породы кислого состава в большей степени подвержены процессам выветривания.
Скорости упругих волн в осадочных породах.
Упругие свойства осадочных пород определяются составом, пористостью, диагенезом пород и свойствами порового заполнителя. В общем случае скорость продольных волн в осадочных породах изменяется от 0,3 до 6,9 км/с. Отношение vP/vSразлична у различных пород: в глине 0,07-0,6, в лессе 0,3-0,6, в песке 0,1-0,3. Модуль Юнга изменяется от 3 ГПа в глине до 165 ГПа в доломите. Коэффициент Пуассона изменяется в пределах 0,1-0,45.
Максимальные скорости упругих волн и модулей упругости отмечаются в уплотненных карбонатных породах, меньше величины этих параметров наблюдаются в уплотненных песчано-глинистых и гидрохимических образованиях.
В значительной мере определяет скорость упругих волн в осадочных породах - пористость. Пористость может изменяться от 0 до 50%. С увеличением пористости породы сейсмические скорости в ней уменьшаются. Особенно эта закономерность справедлива для терригенных отложений, у которых величина пористости может достигать 30-40%.
Фактором, влияющим на скорость упругих волн в осадочных породах, является тип заполняющего породу флюида. Насыщение порового пространства среды жидкостью, химически не взаимодействующей с минеральным скелетов породы, обуславливает увеличение скорости упругих волн. Насыщение глин и глинистых песчаников водой приводит к разбуханию глинистых минералов, потере связанности породы и уменьшение скорости.
Резкое возрастание сейсмических скоростей в породе вызывает замерзание воды, находящиеся в порах, кавернах, трещинах. Так как скорость продольных волн во льду почти в 2,5 раза выше, чем в воде. Поэтому скорость может возрастать на 1- 2 км/с.
Скорость увеличивается с возрастом пород, глубиной залегания, степенью цементации. Увеличение скорости с глубиной происходит из-за роста горного давления. Поскольку уменьшается пористость пород, увеличивается модуль Юнга и, соответственно, увеличивается скорость продольных волн. Это явление наиболее выражено для терригенных пород. В карбонатных отложениях это свойство проявляется слабо, и практически не заметно для хемогенных осадков.
Экспериментально установлен рост процесса поглощения αс увеличением пористости пород. Установлен рост значенийαPиαSс увеличением глинистости осадочных образований.