
- •Введение
- •Глава 1. Метод проецирования
- •1.1. Центральная проекция
- •1.2. Параллельная проекция
- •1.2.1. Свойства параллельных проекций
- •1.3. Показатели искажения
- •1.4. Аксонометрические проекции
- •Изображения точки
- •1.4.1.Направление аксонометрических осей и показатели
- •1.4.2. Построение окружности в аксонометрических проекциях
- •Глава 2. Точка, прямая, плоскость
- •2.1. Ортогональные проекции точки
- •2.1.1. Безосный эпюр
- •Б) на две плоскости проекции; в) безосный
- •2.2. Ортогональные проекции прямой
- •2.2.1. Прямые частного положения
- •2.2.2. Прямая общего положения
- •2.2.3 Определение натуральной величины отрезка прямой и углов его наклона к плоскостям проекций
- •Наклона: а) в диметрии; б) на эпюре
- •2.2.4. Следы прямой линии
- •2.3. Взаимное положение прямых линий
- •А) параллельные; б) пересекающиеся; в) скрещивающиеся
- •2.3.1. Конкурирующие точки
- •2.4. Проекции плоских углов
- •2.4.1. Теорема о проекциях прямого угла
- •А) на фронтальной плоскости проекции; б) на горизонтальной плоскости проекции
- •2.5. Ортогональные проекции плоскости
- •А) в диметрии; б) на эпюре
- •2.5.1. Прямая и точка в плоскости
- •А) заданной прямоугольником; б) заданной следом
- •2.5.2. Особые линии плоскости
- •2.5.3. Плоскости общего положения
- •2.5.4. Плоскости частного положения
- •А) в диметрии; б) на эпюре
- •Глава 3. Относительное положение прямой и плоскости, двух плоскостей
- •3.1. Пересечение прямой общего положения с проецирующей
- •А) в диметрии; б) на эпюре
- •3.2. Линия пересечения проецирующей плоскости с
- •3.3. Пересечение плоскости с прямой общего положения
- •3.4 Взаимное пересечение плоскостей общего положения
- •3.5. Прямая, параллельная плоскости
- •3.6. Параллельные плоскости
- •3.7. Прямая, перпендикулярная плоскости
- •3.8. Взаимно перпендикулярные плоскости
- •Глава 4. Способы преобразования чертежа
- •4.1. Способ замены плоскостей проекций
- •Преобразование чертежа точки и прямой
- •А) и угла α; б) и угла β
- •Преобразование чертежа плоскости
- •Плоскости в плоскость уровня
- •Способ вращения
- •В плоскость уровня
- •Вращение вокруг оси, перпендикулярной к плоскости
- •4.2.2. Вращение без указания осей на чертеже –
- •Способом плоскопараллельного перемещения
- •4.2.3. Способ вращения вокруг линии уровня
- •Глава 5. Многогранники
- •5.1. Общие положения
- •Г) призма усеченная
- •Грани вcc’в’
- •Грани авв’а’
- •Грани sвс
- •5.2. Пересечение многогранников плоскостью
- •Положения и определение натуральной величины сечения
- •5.3. Пересечение многогранников с прямой линией
- •С пирамидой
- •5.4. Взаимное пересечение многогранников
- •5.5. Развертки многогранников
- •Усеченной призмы
- •Глава 6. Кривые линии
- •6.1. Основные определения и проекции кривых
- •6.2. Пространственные кривые
- •Глава 7. Кривые поверхности
- •7.1. Общие сведения
- •7.2. Поверхности вращения
- •7.3. Пересечение поверхности вращения плоскостью
- •7.3.1. Цилиндр. Возможные сечения
- •7.3.2. Конус. Возможные сечения
- •7.3.3. Пересечение поверхности вращения с плоскостью
- •Положения заданной прямыми линиями ав и вс
- •7.4. Пересечение поверхности вращения с прямой линией
- •7.5. Взаимное пересечение поверхностей
- •7.5.1. Способ вспомогательных секущих плоскостей
- •7.5.2. Способ вспомогательных сферических поверхностей
- •7.6. Развертка поверхности вращения
- •7.7. Развертываемые и косые поверхности
- •7.7.1. Линейчатые развертываемые поверхности.
- •Заключение
- •Список литературы
- •1.4.1.Направление аксонометрических осей
- •1.4.2. Построение окружности в
- •Глава 2. Точка, прямая, плоскость 12
- •2.2.3 Определение натуральной величины отрезка
- •Глава 3. Относительное положение прямой и
- •3.1 Пересечение прямой общего положения
- •3.2 Линия пересечения проецирующей
- •Глава 4. Способы преобразования чертежа 37
- •4.1.1 Преобразование чертежа точки и прямой 37
- •4.2.1 Вращение вокруг оси, перпендикулярной
- •4.2.2 Вращение без указания осей на чертеже –
- •Глава 5. Многогранники 49
- •Глава 6. Кривые линии 59
- •Глава 7. Кривые поверхности 63
- •Краткий курс по начертательной геометрии для студентов заочной формы обучения (технические специальности)
Наклона: а) в диметрии; б) на эпюре
В
прямоугольном треугольнике АВВ
- катет АВ
= АнВн;
катет ВВ
=
Zв
– Zа
= ∆Z;
гипотенуза АВ
– натуральная величина отрезка, α
– угол наклона прямой АВ
к плоскости Н.
В прямоугольном треугольнике АВА - сторона А В = AvBv; сторона А А = Yа – Yв = ∆Y; сторона АВ – натуральная величина отрезка; β – угол наклона прямой к плоскости V.
2.2.4. Следы прямой линии
Точки пересечения прямой линии с плоскостями проекций называют следами прямой линии (Рис.2.8а, б).
Рис. 2.8. Следы прямой: а) в диметрии; б) на эпюре
Продолжим прямую АВ до пересечения с плоскостью Н. Получим точку М, которая является горизонтальным следом прямой. Продолжая прямую АВ до пересечения с плоскостью V получим точку N – фронтальный след прямой.
Чтобы на эпюре найти горизонтальный след, необходимо продолжить фронтальную проекцию AvBv до пересечения с осью Х; через точку пересечения Мv (фронтальную проекцию горизонтального следа) провести перпендикуляр к оси Х до пересечения с продолжением горизонтальной проекции прямой АнВн. Точка пересечения Мн является горизонтальной проекцией горизонтального следа (она совпадает с самим следом М).
Для нахождения фронтального следа необходимо продолжить горизонтальную проекцию АнВн до пересечения с осью Х; через точку Nн (горизонтальную проекцию фронтального следа) провести перпендикуляр до пересечения с продолжением фронтальной проекции AvBv. Точка Nv является фронтальной проекцией фронтального следа (она совпадает с точкой N – самим фронтальным следом прямой).
2.3. Взаимное положение прямых линий
Если прямые параллельны, то их одноименные проекции параллельны.
Если прямые линии пересекаются, то их одноименные проекции пересекаются между собой в точках, которые являются проекциями точки пересечения этих прямых.
Скрещивающиеся прямые линии не пересекаются и не параллельны между собой, хотя проекции их могут пересекаться или быть параллельными.
Точки пересечения этих проекций не лежат на одной линии связи. Одной точке 1v соответствуют две точки 1н и 1'н. Эти точки лежат на одном перпендикуляре к плоскости V (Рис.2.9а, б, в).
Рис. 2.9. Взаимное положение отрезков на эпюре:
А) параллельные; б) пересекающиеся; в) скрещивающиеся
2.3.1. Конкурирующие точки
Точки, лежащие на одном перпендикуляре к плоскости проекций, называются конкурирующими относительно этой плоскости (Рис.2.10а, б).
По конкурирующим точкам определяется видимость геометрических образов на эпюре. Видимой на данной проекции всегда будет та из конкурирующих точек, которая лежит дальше от этой плоскости проекций, следовательно, ближе к зрителю. Точки А и В являются фронтально конкурирующими. На фронтальной плоскости проекции будет видима точка А, т.к. она дальше от плоскости V и ближе к наблюдателю. Точки А и С – горизонтально конкурирующие. На горизонтальной плоскости проекций будет видима также точка А, т.к. она отстоит от плоскости Н дальше, чем точка С.
Рис. 2.10. Конкурирующие точки: а) в диметрии; б) на эпюре