
- •Введение
- •Глава 1. Метод проецирования
- •1.1. Центральная проекция
- •1.2. Параллельная проекция
- •1.2.1. Свойства параллельных проекций
- •1.3. Показатели искажения
- •1.4. Аксонометрические проекции
- •Изображения точки
- •1.4.1.Направление аксонометрических осей и показатели
- •1.4.2. Построение окружности в аксонометрических проекциях
- •Глава 2. Точка, прямая, плоскость
- •2.1. Ортогональные проекции точки
- •2.1.1. Безосный эпюр
- •Б) на две плоскости проекции; в) безосный
- •2.2. Ортогональные проекции прямой
- •2.2.1. Прямые частного положения
- •2.2.2. Прямая общего положения
- •2.2.3 Определение натуральной величины отрезка прямой и углов его наклона к плоскостям проекций
- •Наклона: а) в диметрии; б) на эпюре
- •2.2.4. Следы прямой линии
- •2.3. Взаимное положение прямых линий
- •А) параллельные; б) пересекающиеся; в) скрещивающиеся
- •2.3.1. Конкурирующие точки
- •2.4. Проекции плоских углов
- •2.4.1. Теорема о проекциях прямого угла
- •А) на фронтальной плоскости проекции; б) на горизонтальной плоскости проекции
- •2.5. Ортогональные проекции плоскости
- •А) в диметрии; б) на эпюре
- •2.5.1. Прямая и точка в плоскости
- •А) заданной прямоугольником; б) заданной следом
- •2.5.2. Особые линии плоскости
- •2.5.3. Плоскости общего положения
- •2.5.4. Плоскости частного положения
- •А) в диметрии; б) на эпюре
- •Глава 3. Относительное положение прямой и плоскости, двух плоскостей
- •3.1. Пересечение прямой общего положения с проецирующей
- •А) в диметрии; б) на эпюре
- •3.2. Линия пересечения проецирующей плоскости с
- •3.3. Пересечение плоскости с прямой общего положения
- •3.4 Взаимное пересечение плоскостей общего положения
- •3.5. Прямая, параллельная плоскости
- •3.6. Параллельные плоскости
- •3.7. Прямая, перпендикулярная плоскости
- •3.8. Взаимно перпендикулярные плоскости
- •Глава 4. Способы преобразования чертежа
- •4.1. Способ замены плоскостей проекций
- •Преобразование чертежа точки и прямой
- •А) и угла α; б) и угла β
- •Преобразование чертежа плоскости
- •Плоскости в плоскость уровня
- •Способ вращения
- •В плоскость уровня
- •Вращение вокруг оси, перпендикулярной к плоскости
- •4.2.2. Вращение без указания осей на чертеже –
- •Способом плоскопараллельного перемещения
- •4.2.3. Способ вращения вокруг линии уровня
- •Глава 5. Многогранники
- •5.1. Общие положения
- •Г) призма усеченная
- •Грани вcc’в’
- •Грани авв’а’
- •Грани sвс
- •5.2. Пересечение многогранников плоскостью
- •Положения и определение натуральной величины сечения
- •5.3. Пересечение многогранников с прямой линией
- •С пирамидой
- •5.4. Взаимное пересечение многогранников
- •5.5. Развертки многогранников
- •Усеченной призмы
- •Глава 6. Кривые линии
- •6.1. Основные определения и проекции кривых
- •6.2. Пространственные кривые
- •Глава 7. Кривые поверхности
- •7.1. Общие сведения
- •7.2. Поверхности вращения
- •7.3. Пересечение поверхности вращения плоскостью
- •7.3.1. Цилиндр. Возможные сечения
- •7.3.2. Конус. Возможные сечения
- •7.3.3. Пересечение поверхности вращения с плоскостью
- •Положения заданной прямыми линиями ав и вс
- •7.4. Пересечение поверхности вращения с прямой линией
- •7.5. Взаимное пересечение поверхностей
- •7.5.1. Способ вспомогательных секущих плоскостей
- •7.5.2. Способ вспомогательных сферических поверхностей
- •7.6. Развертка поверхности вращения
- •7.7. Развертываемые и косые поверхности
- •7.7.1. Линейчатые развертываемые поверхности.
- •Заключение
- •Список литературы
- •1.4.1.Направление аксонометрических осей
- •1.4.2. Построение окружности в
- •Глава 2. Точка, прямая, плоскость 12
- •2.2.3 Определение натуральной величины отрезка
- •Глава 3. Относительное положение прямой и
- •3.1 Пересечение прямой общего положения
- •3.2 Линия пересечения проецирующей
- •Глава 4. Способы преобразования чертежа 37
- •4.1.1 Преобразование чертежа точки и прямой 37
- •4.2.1 Вращение вокруг оси, перпендикулярной
- •4.2.2 Вращение без указания осей на чертеже –
- •Глава 5. Многогранники 49
- •Глава 6. Кривые линии 59
- •Глава 7. Кривые поверхности 63
- •Краткий курс по начертательной геометрии для студентов заочной формы обучения (технические специальности)
4.2.2. Вращение без указания осей на чертеже –
плоскопараллельное перемещение
Способ вращения вокруг оси перпендикулярной плоскости проекций не всегда удобен, так как новое положение проекций формы может налагаться на заданное изображение. Проще и рациональней использовать способ плоскопараллельного перемещения. Он заключается в том, что используемые геометрические формы перемещаются в плоскостях, параллельных плоскостям проекций, причем взаимная связь элементов формы не изменяется.
Задача: Прямую общего положения преобразовать в горизонтально-проецирующую.
Решение. На рис.4.11 сначала отрезок АВ общего положения переместили в положение фронтали, для этого построили А1НВ1Н = АН ВН параллельно фронтальной плоскости на произвольном расстоянии от оси Х. Одновременно все точки отрезка на фронтальной проекции движутся в горизонтальных направлениях к соответствующим каждой точке линиям связи с новыми горизонтальными проекциями этих точек. Второе перемещение, цель которого преобразовать отрезок АВ в проецирующее вертикальное положение, выполнено параллельно фронтальной плоскости проекций.
При перемещении нескольких связанных между собой геометрических элементов для решения метрических задач необходимо оставлять неизменным их взаимное размещение, так как при нарушении этого положения ответ не будет искомым.
Рис.4.11 Плоскопараллельное перемещение отрезка АВ
Задача: Определить натуральную величину треугольника АВС (Рис.4.12).
Решение.
1. Провести горизонталь А1 в треугольнике АВС.
2. Горизонталь А’H1’H построить перпендикулярно фронтальной плоскости на произвольном расстоянии от нее.
3. Методом засечек относительно горизонтали А’Н1’Н перенести горизонтальную проекцию треугольника в положение А’НВ’НС’Н (АНВНСН = А’НВ’НС’Н). По горизонтальной проекции треугольника построить фронтальную. Таким образом треугольник общего положения преобразовали во фронтально-проецирующую плоскость. Этим нашли угол наклона плоскости к горизонтальной плоскости проекций.
4. Перенести новую фронтальную проекцию треугольника А’VВ’VC’V в положение А’’VВ’’VС’’V параллельное горизонтальной плоскости проекций, достроить горизонтальную проекцию А’’НВ’’НС’’Н. Этим преобразовали фронтально-проецирующую плоскость в плоскость уровня, а именно в горизонтальную, следовательно горизонтальная проекция А’’НВ’’НС’’Н в натуральной величине.
Рис.4.12 Определение натуральной величины треугольника
Способом плоскопараллельного перемещения
4.2.3. Способ вращения вокруг линии уровня
Этот способ удобно применять в тех случаях, когда требуется расположить плоскую фигуру параллельно плоскости проекций, что достигается за один поворот.
Рассмотрим сущность способа на примере поворота точки А вокруг горизонтали (Рис.4.13а).
Возьмем в пространстве точку А и горизонталь СД и повернем точку А вокруг СД до положения, когда она окажется в горизонтальной плоскости Н1, проходящей через СД. Траекторией точки А будет окружность R=ОА, центр О которой лежит на прямой СД. Плоскость окружности, то есть плоскость S вращения точки А перпендикулярна к прямой СД – оси вращения, а следовательно и к плоскости Н. Поэтому горизонтальная проекция А будет перемещаться по горизонтальному следу SН плоскости вращения, перпендикулярному к горизонтальной проекции СНДН оси вращения.
Чтобы выполнить такой поворот точки А на чертеже, (Рис 4.13б), необходимо соблюдать следующие требования:
1.Провести через точку АН прямую (след SН плоскости вращения), перпендикулярную к СНDН оси вращения, их пересечение определяет положение центра вращения О точки А и, следовательно, проекции радиуса вращения ОНАН и ОVAV.
2.Определить одним их известных способов натуральную величину радиуса RA (ОНАО). (На рис. 4.13б применен способ построения прямоугольного треугольника ОНАНАО).
a) б)
Рис.4.13 Определение расстояния от точки А до линии СD способом вращения вокруг линии уровня
3.Отложить от центра ОН на прямой, перпендикулярной к СНDН, отрезок ОНАО, равный натуральной величине радиуса RA.
Задача: Определить натуральную величину треугольника АВС способом вращения вокруг горизонтали (Рис. 14).
Решение. Если за ось вращения построить горизонталь, принадлежащую плоскости треугольника АВС, то для поворота этой фигуры в положение, параллельное горизонтальной плоскости проекций, достаточно повернуть всего одну точку треугольника, не лежащую на оси вращения, а именно точку В. Остальные точки строятся из условия принадлежности их плоскости фигуры. Горизонталь А1 проведена через вершину А треугольника до пересечения с продолжением стороны ВС в точке 1. В треугольнике АВ1 вершины А и 1 лежат на оси вращения и не изменят своего положения при вращении вокруг горизонтали. Вращая точку В способом, рассмотренным на рис.4.13б, определяют положение ее новой проекции В1. Соединив ее с точками А и 1, получим треугольник АВ’1, повернутый в положение, параллельное плоскости Н. Положение проекции точки С’, вершины С находят, проведя через точку С прямую перпендикулярную к оси вращения А1 до пересечения со стороной В1, поскольку все точки треугольника при его повороте перемещаются в параллельных плоскостях. Проекция АНВ’НС’Н треугольника АВС определяет его натуральную величину, т.к. АVВ’VС’V параллельна Н.