
- •Глава 1. Механизация
- •Назначение и область применения
- •1.2. Расчет склада
- •Глава 2. Конструкторская часть
- •2.1 Расчет механизма подъема
- •2.1.1. Выбор каната и барабана
- •2.1.2. Выбор электродвигателя
- •2.1.3. Выбор редуктора
- •2.1.4. Выбор тормоза
- •2.1.5. Компоновка механизма
- •2.2 Расчет грейфера
- •2.3. Расчет механизма передвижения тележки
- •2.3.1. Определение предварительной массы тележки
- •2.3.2. Выбор ходовых колес
- •2.3.3. Выбор электродвигателя
- •2.3.4. Выбор редуктора
- •2.3.5. Проверка двигателя по пусковому моменту
- •2.3.6. Коэффициент запаса сцепления приводных ходовых колес с рельсом
- •2.3.7. Расчет подшипников ходового колеса
- •2.3.8. Расчет тормоза
- •2.4 Расчет механизма передвижения крана
- •2.4.1. Расчет сопротивления передвижению крана
- •2.4.2. Коэффициент запаса сцепления приводных ходовых колес с рельсом
- •2.4.3. Выбор электродвигателя
- •2.4.4. Выбор редуктора
- •Выбор тормоза
- •Глава 3. Металлоконструкция
- •3.1. Расчет балки
- •Глава 4. Технологическая часть
- •4.1. Назначение детали в узле
- •4.2. Определение годового объема выпуска и типа производства
- •4.3. Анализ технологичности конструкции детали
- •4.4. Выбор и обоснование способа получения заготовки
- •4.5. Выбор технологических баз
- •4.6. Разработка маршрута обработки заготовки
- •4.7. Расчет операционных припусков.
- •4.8. Расчет режимов резания.
- •4.9. Выбор и расчет станочного приспособления
- •4.9.1. Расчет приспособления
- •Глава 5. Электрическая часть
- •5.1 Требования, предъявляемые к механизмам козлового крана
- •5.2. Выбор системы управления крановыми двигателями
- •5.3. Описание схемы
- •5.4. Выбор кранового электродвигателя
- •5.4.1. Расчет выбранного двигателя
- •Глава 6. Исследовательская часть
- •6.1. Состояние грузоподъемных механизмов и проблемы повышения долговечности и надежности их металлоконструкций
- •Глава 7. Безопасность труда и промышленная экология
- •7.1. Обеспечение безопасности труда при эксплуатации крана
- •7.1.1. Обеспечение необходимых параметров микроклимата на рабочем месте
- •7.1.2. Обеспечение вибрационной безопасности при эксплуатации крана
- •7.1.3. Обеспечение акустической безопасности при работе крана
- •7.1.4. Обеспечение пожаробезопасности при эксплуатации крана
- •7.1.5. Оценка электробезопасности козлового грейферного крана
- •7.2. Воздействие на окружающую среду выделений пыли, газов, пара при изготовлении и эксплуатации крана
- •7.2.1. Расчет средств очистки вентиляционных выбросов при изготовлении крана
- •1 Секция с набивным слоем из волокон;
- •2 Секция тонкой очистки.
- •Глава 8. Экономическая часть
- •8.1. Расчет интегрального экономического эффекта от разработки и внедрения малометаллоемкой конструкции пролетного строения
- •8.1.1. Расчет капитальных затрат
- •8.1.2. Определение базовых и новых эксплуатационных затрат
- •Приложение 1 Технические характеристики станков Станок токарно-винторезный 16б16а
- •Станок токарно-винторезный 16т02а
- •Станок Вертикально-фрезерный консольный 6т104
- •Станок Круглошлифовальный 3м153
- •Приложение 2 Список литературы
Глава 4. Технологическая часть
4.1. Назначение детали в узле
Широкое распространение в машиностроении получили детали типа валов – гладкие и ступенчатые с разными перепадами диаметров. Валы применяются для передачи крутящего момента и для поддержания вращающихся деталей.
Данный в задании валик, можно применить в ременной передачи. Валик устанавливается в корпусе. А крутящий момент передается на вал через подшипник.
4.2. Определение годового объема выпуска и типа производства
N=mM (1+γδ/100) = 3×12000(1+6×3/100)=57600,
Где: m – количество одноименных деталей в машине;
М=12000 – годовой объем выпуска машин;
γ – 5…10 количество запасных частей в процентах; [8]
δ – 2…6 процент брака и технологических потерь, включая детали используемые для настройки станка, в процентах.
N=57600 – производство крупносерийное
серийное производство характеризуется ограниченной номенклатурой изделий, изготовляемых периодически повторяющимися партиями и сравнительно большим объемом выпуска, чем в единичном типе производства. При серийном производстве используются универсальные станки, оснащенные как специальными, так и универсальными и универсально–сборными приспособлениями, что позволяет снизить трудоемкость и себестоимость изготовления изделия. В серийном производстве технологический процесс изготовления изделия преимущественно дифференцирован, т.е. расчленен на отдельные самостоятельные операции, выполняемые на определенных станках.
4.3. Анализ технологичности конструкции детали
Каждая деталь должна изготавливаться с минимальными трудовыми и материальными затратами. Эти затраты можно сократить в значительной степени от правильного выбора варианта технологического процесса, и его оснащение, механизации и автоматизации, применения оптимальных режимов обработки и правильной подготовки производства.
При оценке технологичности учитываются следующие характеристики:
конструкция детали должна состоять из стандартных и унифицированных конструктивных элементов или быть стандартной в целом;
детали должны изготовляться из стандартных унифицированных заготовок или заготовок полученных рациональным способом;
размеры и поверхности детали должны иметь соответственно оптимальные степень точности и шероховатость;
физико-химические и механические свойства и механические свойства материала, жесткость детали, ее форма и размеры должны соответствовать требованиям технологии изготовления;
показатели базовой поверхности (точность, шероховатость) детали должны обеспечивать точность установки, обработки и контроля;
конструкция детали должна обеспечивать возможность применения типовых и стандартных технологических процессов ее изготовления.
Технологичность детали характеризуется коэффициентом использования материала.
4.4. Выбор и обоснование способа получения заготовки
В подъемно-транспортном машиностроении для изготовления деталей машин и механизмов используются разнообразные заготовки. Основные виды черновых заготовок следующие: прокат, литье, полученные давлением, полученные формообразованием.
Необходимость соблюдения требований чертежей, заданных припусков поверхностей, твердости и обрабатываемости определяет следующие основные требования к заготовкам:
поверхности, используемые как базовые в процессе дальнейшей обработки, должны быть гладкими, без прибылей, литейных или штамповочных уклонов, без заусенцев и линий разъема форм;
для устранения внутренних напряжений заготовки должны подвергаться термической обработке: отжигу и нормализации;
для улучшения условий обрабатываемости отливки должны быть очищены от литников, прибылей, заливов и других неровностей;
при наличии искривления заготовок из сортового проката, они подвергаются правке (на прессах, ударным способом, на правильно-калибровочных вальцах и т.п.);
при изготовлении заготовок любого вида всегда должно обеспечиваться получение заготовки минимальной массы, то есть заготовки с минимальными припусками.
Рассматривая наиболее распространенные варианты получения заготовок, я пришла к выводу, что для моего задания наиболее подходит заготовка, полученная штамповкой. Т.к. снижается расход металла при механической обработке, а соответственно ведет к понижению себестоимости.
Также я рассматривала и другой вариант получения заготовки – прокатом. Но в этом методе получения заготовок есть недостатки: большое количество металла уходит в стружку, материал расходуется нерационально
Рациональность выбора заготовки с точки зрения экономии материала определяется коэффициентом использования материала:
,
где Q1 – масса детали; [8] с.23
Q2 – масса заготовки.
Т.к. Кm=0.83, то можно сделать вывод, что материал расходуется рационально.