
- •Глава 1. Механизация
- •Назначение и область применения
- •1.2. Расчет склада
- •Глава 2. Конструкторская часть
- •2.1 Расчет механизма подъема
- •2.1.1. Выбор каната и барабана
- •2.1.2. Выбор электродвигателя
- •2.1.3. Выбор редуктора
- •2.1.4. Выбор тормоза
- •2.1.5. Компоновка механизма
- •2.2 Расчет грейфера
- •2.3. Расчет механизма передвижения тележки
- •2.3.1. Определение предварительной массы тележки
- •2.3.2. Выбор ходовых колес
- •2.3.3. Выбор электродвигателя
- •2.3.4. Выбор редуктора
- •2.3.5. Проверка двигателя по пусковому моменту
- •2.3.6. Коэффициент запаса сцепления приводных ходовых колес с рельсом
- •2.3.7. Расчет подшипников ходового колеса
- •2.3.8. Расчет тормоза
- •2.4 Расчет механизма передвижения крана
- •2.4.1. Расчет сопротивления передвижению крана
- •2.4.2. Коэффициент запаса сцепления приводных ходовых колес с рельсом
- •2.4.3. Выбор электродвигателя
- •2.4.4. Выбор редуктора
- •Выбор тормоза
- •Глава 3. Металлоконструкция
- •3.1. Расчет балки
- •Глава 4. Технологическая часть
- •4.1. Назначение детали в узле
- •4.2. Определение годового объема выпуска и типа производства
- •4.3. Анализ технологичности конструкции детали
- •4.4. Выбор и обоснование способа получения заготовки
- •4.5. Выбор технологических баз
- •4.6. Разработка маршрута обработки заготовки
- •4.7. Расчет операционных припусков.
- •4.8. Расчет режимов резания.
- •4.9. Выбор и расчет станочного приспособления
- •4.9.1. Расчет приспособления
- •Глава 5. Электрическая часть
- •5.1 Требования, предъявляемые к механизмам козлового крана
- •5.2. Выбор системы управления крановыми двигателями
- •5.3. Описание схемы
- •5.4. Выбор кранового электродвигателя
- •5.4.1. Расчет выбранного двигателя
- •Глава 6. Исследовательская часть
- •6.1. Состояние грузоподъемных механизмов и проблемы повышения долговечности и надежности их металлоконструкций
- •Глава 7. Безопасность труда и промышленная экология
- •7.1. Обеспечение безопасности труда при эксплуатации крана
- •7.1.1. Обеспечение необходимых параметров микроклимата на рабочем месте
- •7.1.2. Обеспечение вибрационной безопасности при эксплуатации крана
- •7.1.3. Обеспечение акустической безопасности при работе крана
- •7.1.4. Обеспечение пожаробезопасности при эксплуатации крана
- •7.1.5. Оценка электробезопасности козлового грейферного крана
- •7.2. Воздействие на окружающую среду выделений пыли, газов, пара при изготовлении и эксплуатации крана
- •7.2.1. Расчет средств очистки вентиляционных выбросов при изготовлении крана
- •1 Секция с набивным слоем из волокон;
- •2 Секция тонкой очистки.
- •Глава 8. Экономическая часть
- •8.1. Расчет интегрального экономического эффекта от разработки и внедрения малометаллоемкой конструкции пролетного строения
- •8.1.1. Расчет капитальных затрат
- •8.1.2. Определение базовых и новых эксплуатационных затрат
- •Приложение 1 Технические характеристики станков Станок токарно-винторезный 16б16а
- •Станок токарно-винторезный 16т02а
- •Станок Вертикально-фрезерный консольный 6т104
- •Станок Круглошлифовальный 3м153
- •Приложение 2 Список литературы
4.9. Выбор и расчет станочного приспособления
Для выполнения этого пункта я выбрал такой тип приспособления, как трехкулачковый патрон с клиновым центрирующим механизмом (токарная операция), который приводится в действие от вращающегося пневмоцилиндра.
Из приспособлений для токарных станков наиболее широко применяются трехкулачковые патроны. Конструкция трехкулачкового патрона состоит из корпуса 1 в котором перемещаются три кулачка 2 с рифленой поверхностью которых сопрягаются сменные кулачки. Для крепления накладных кулачков после их перестановки в процессе наладки патрона служат винты 4 и сухари 5.
Скользящая в отверстии корпуса патрона муфта 6 имеет для связи с кулачками три паза а с углом наклона 15 и приводится в движение от штока привода. В рабочем положении муфта удерживается штифтом 9, который одновременно служит упором, ограничивающим поворот муфты при смене кулачков. Втулка 7 предохраняет патрон от проникновения
в него грязи и стружки. Одновременно ее конусное отверстие с используется для установки направляющих втулок, упоров и т.п.
К достоинствам клинового патрона следует отнести:
1) компактность и жесткость, так как механизм патрона состоит всего из четырех подвижных частей (скользящей муфты и кулачков);
2) износоустойчивость, так как соединение муфты с кулачками происходит по плоскостям с равномерно распределенным давлением, а возможность быстрого съема кулачков способствует хорошей их чистке и смазке.
Пневмоцилиндр состоит из двух основных частей: муфты 1 и цилиндра 2 . Для присоединения тяги патрона 8 имеется резьбовое отверстие на выступающем конце штока 4. Воздухоподводящая муфта присоединяется к цилиндру болтами с помощью фланца. Сжатый воздух подается через ниппель 6, центровое отверстие в стержне 7 и отверстие А в штоке 4 в штоковую полость цилиндра. Под действием давления воздуха (0,5-0,6 МПа) поршень 3 перемещается влево, создавая на штоке 4 тянущую силу. При переключении крана управления сжатый воздух через ниппель 5, радиальные отверстия и скосы в стержне 7 подается в поршневую (нештоковую) полость цилиндра, поршень перемещается вправо, создавая на штоке толкающую силу.
Соединение патрона со штоком пневмоцилиндра осуществляется тягой.
4.9.1. Расчет приспособления
Операция – токарная черновая
Dо.п.=85 мм – диаметр обрабатываемой поверхности
Dз=105,25 мм – диаметр заготовки
Lз=472 мм – длина заготовки
Pz=1574 Н – сила резания
Определим коэффициент запаса для самоцентрирующегося трехкулачкового патрона с пневматическим приводом зажима:
Кзап=КоК1К2К3К4К5К6=1,5×1×1,2×1,2×1×1×1=2,16
где Ко=1,5 – постоянный коэффициент запаса; [8] с.107
К1=1 – коэффициент, учитывающий состояние поверхности заготовки;
К2=1,2 - коэффициент, учитывающий увеличение силы резания при затуплении режущего инструмента;
К3=1,2 - коэффициент, учитывающий увеличение силы резания при обработке прерывистых поверхностей на детали;
К4=1 - коэффициент, учитывающий постоянство силы зажима, развиваемой приводом приспособления;
К5=1 - коэффициент, учитывающий удобное расположение рукоятки для ручных зажимных устройств;
К6=1 - коэффициент, учитывающий при наличии моментов,
стремящихся повернуть обрабатываемую деталь вокруг ее оси.
Определим силу зажима детали одним кулачком патрона:
Wк=Pz
Н
nк=3 – число кулачков в патроне;
fТ.П.=0,8 – коэффициент трения на рабочих поверхностях кулачков;
3. Определим силу на штоке привода трехкулачкового патрона:
Qшт.=Wknkkтр
Н
Kтр=1,05 - коэффициент, учитывающий дополнительные силы трения в патроне;
ак=40 мм – вылет кулачка от середины его опоры в пазу патрона до центра приложения силы на одном кулачке;
hк=65 мм – длина направляющей части кулачка;
fк=0,1 – коэффициент трения кулачка.
4. Определим действительную силу зажима детали:
Qш.д.=
Н
η=0.85 – коэффициент полезного действия;
Dц=200 мм – диаметр цилиндра;
Р=0.39 Мн/м – давление сжатого воздуха.