|
|
|
|
|
|
|
(x) |
|
|
|
|
|
? |
Доказательство. |
lim |
|
|
|
|
|
= |
|
|
|
|
|
|
86 |
x |
! |
! (x) = a 6= 0 |
h1; h2 |
|
R и U (!) такие, что |
|
|
! |
|
() |
( |
и бесконечно малые одного порядка при x |
|
!)) |
x A U (!) : 0 < h1 < (x) |
|
< h2 : |
|
9 |
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
2 \ |
|
|
|
|
(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
First Prev Next Last Go Back Full Screen Close Quit
jaj
Фиксируем "0 = 2 > 0:
x ! |
|
(x) = a |
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lim |
|
|
(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 ! |
|
|
|
|
|
|
8 2 \ |
|
|
|
|
(x) |
|
|
|
|
|
|
|
0 |
|
|
2 |
U (!) т.ч. x |
|
) |
|
|
( |
) |
: |
|
|
|
(x) |
- a < " = |
jaj |
|
|
|
|
|
|
|
|
|
|
j |
|
|
|
|
|
|
|
|
|
A |
U |
|
|
! |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
j |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(x) |
|
|
|
|
|
|
|
(x) |
|
|
|
|
a |
|
|
x |
A |
\ |
U (!) : |
|
|
|
|
|
|
- jaj |
|
|
|
|
|
|
|
|
|
- |
a < |
|
|
|
|
(x) |
|
|
|
|
|
|
|
2 |
|
8 2 |
|
|
|
|
|
|
|
|
|
|
|
|
(x) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(x) |
|
|
|
|
|
|
|
|
|
|
j |
a |
j |
(10:16) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
x |
2 |
A |
\ |
U |
(!) : |
|
|
|
|
|
- |
jaj |
|
< |
|
|
|
|
|
= |
|
|
|
|
(x) |
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 x |
A |
\ |
U |
(!) : 0 < |
|
jaj |
|
< |
|
(x) |
|
< |
|
3jaj |
1: |
2 |
|
(x) |
2 |
B |
8 2 |
|
|
|
|
|
|
C |
|
|
|
|
|
|
h |
1 |
|
|
|
|
|
|
|
h |
B |
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
C |
@ |
|
|
|
|
|
|{z} |
|
|
|
|
|
|{z}A |
First Prev Next Last Go Back Full Screen Close Quit
Пример 73. Пусть
(x) = x(2 + cos x) и (x) = sin 2x:
Показать, что это - бесконечно малые одного порядка при x ! 0.
First Prev Next Last Go Back Full Screen Close Quit
Решение. Очевидно, что и бесконечно малые при x ! 0: Так как
x 0 |
sin 2x |
|
= 0 |
= |
|
|
|
|
|
lim |
2x + x cos x |
|
0 |
|
10:33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
! |
|
= lim |
|
2x |
|
|
+ |
|
|
x cos x |
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
! |
0 |
sin 2x |
|
2 sin x cos x |
|
|
|
|
= lim |
|
|
|
+ |
|
|
|
|
|
|
|
|
= |
1 + |
|
= |
|
; |
|
sin 2x |
2 |
|
|
|
|
|
|
|
|
x 0 |
|
|
sin x! |
2 |
2 |
|
|
! |
|
|
|
1 |
|
|
1 |
|
1 |
3:20:1 |
1 |
3 |
|
|
|
|
|
2x |
|
|
|
|
|
|
|
x |
|
|
|
|
|
|
|
то, в силу теоремы 49, и бесконечно малые одного порядка при x ! 0:
First Prev Next Last Go Back Full Screen Close Quit
3.22.1.Эквивалентные бесконечно малые.
Пусть ! конечная или бесконечно удалённая предельная точка множества A Rk и
; : A ! B; A Rk; B R бесконечно малые при x ! !.
First Prev Next Last Go Back Full Screen Close Quit
(x)
Определение 87. Если (x) и (x) есть бес- конечно малые при x ! ! и
то говорят, что бесконечно малые (x) и(x) эквивалентны при x ! ! и пишут:
(x) (x) при x ! !:
First Prev Next Last Go Back Full Screen Close Quit
Теорема 50. Бесконечно малые (x) и (x) эквивалентны при x ! ! тогда и только тогда, когда их разность есть бесконечно малая более высокого порядка, чем (x)
( и (x)) при x ! !.
First Prev Next Last Go Back Full Screen Close Quit
Доказательство.
( |
|
) |
опр.87 |
lim |
(x) |
|
|
|
|
|
|
|
|
|
|
|
() |
x ! (x) |
|
|
|
! |
|
lim |
|
|
|
|
x |
! |
! |
|
|
|
|
|
|
|
|
|
= 1 ()
(x) - (x) = 0 :(x)
First Prev Next Last Go Back Full Screen Close Quit
Теорема 51. Пусть
(x) 1(x) и (x) 1(x) при x ! !:
Тогда, если существует
lim (x); x!! (x)
то существует и
lim 1(x); x!! 1(x)
и эти пределы равны.
First Prev Next Last Go Back Full Screen Close Quit
(x) 1(x)
при x ! !
(x) 1(x)
при x ! !
9 lim (x) x!! (x)
опр.87 |
x |
|
|
|
|
|
! |
(x) |
() |
lim |
1(x) |
lim |
(x) |
опр.87 |
x |
|
|
|
() |
! |
! |
|
1 |
|
|
! |
|
(x) |
= 1 |
9 |
|
> |
|
> |
|
> |
|
> |
|
> |
= 1 |
= |
31 |
= |
|
> ) |
|
> |
|
> |
|
> |
|
> |
|
; |
!
lim |
1(x) |
|
lim |
1(x) (x) (x) |
lim |
(x) |
|
|
|
|
|
|
|
|
|
|
|
|
(x) 1(x) |
|
x!! 1(x) |
= x!! (x) |
= x!! (x) |
First Prev Next Last Go Back Full Screen Close Quit