Теорема 36. Если вблизи ! выполняются
неравенства ' < f < |
и |
lim |
'(x) = |
lim (x) = a; |
x!! |
x!! |
то
lim f(x) = a:
x!!
First Prev Next Last Go Back Full Screen Close Quit
Доказательство. |
9 |
=? |
lim |
'(x) = a |
(' < f < вблизи !) |
> |
|
x ! |
|
|
|
> |
|
lim |
(x) = a |
= |
) |
x!! |
|
> |
|
|
> |
|
! |
|
; |
|
|
lim f(x) = a () x!!
(8(xn); xn 2 A n f!g; и xn ! ! : f(xn) ! a) :
First Prev Next Last Go Back Full Screen Close Quit
Фиксируем произвольную (xn); xn 2 A n f!g; |
и xn |
|
!. |
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(' < f < |
вблизи !) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
( |
U ! |
|
|
x |
A |
\ |
U |
! |
|
' x |
< f x |
|
< (x) ) |
|
|
9 |
|
( |
!) такая, что 8 |
2 |
|
|
( ) : |
|
( |
) |
|
( ) |
|
опр.19 |
|
9 |
= |
(xn |
|
!) |
|
|
|
() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
> |
|
( |
N = N( ) |
2 N |
такое, что |
n > N : xn |
2 |
U (!)) |
|
|
|
|
|
= |
) |
9 |
|
! |
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
( n > N : '(x |
) < f(x |
) < (()) ) |
|
> |
|
|
|
|
|
|
|
|
8 |
|
|
|
n |
|
|
|
|
n |
|
|
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
; |
|
lim '(x) = a |
= |
|
|
|
|
|
|
|
|
|
('(xn) |
|
|
a) |
22 |
|
|
|
|
|
|
|
|
|
|
|
= |
|
x ! |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
> |
|
|
lim |
(x) = a |
= |
|
|
|
|
|
|
|
|
|
( |
(x |
) |
! |
a) |
= |
) |
x!! |
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
n |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(f(xn) |
|
a) : |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
> |
|
|
|
! |
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
! |
|
> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
; |
|
|
!
Из выделенного синим цветом следует, по
определению Гейне, что lim f(x) = a:
x!!
First Prev Next Last Go Back Full Screen Close Quit
3.19.О неопределённостях.
Пусть f; g : A ! B; A Rk; B R и пусть ! конечная или бесконечно удалённая предельная точка множества A.
First Prev Next Last Go Back Full Screen Close Quit
Теорема 37. Если |
lim |
1 и |
x!! f(x) = |
lim |
|
|
x!! g(x) = 1, то |
|
|
lim (f(x) + g(x)) = 1:
x!!
First Prev Next Last Go Back Full Screen Close Quit
9 f(x) = 1 =
lim (f(x) + g(x)) = 1 =)
x!!
(8(xn); xn 2 A n f!g; и xn ! ! :
f(xn) + g(xn) ! 1) :
First Prev Next Last Go Back Full Screen Close Quit
Фиксируем произвольную (xn); xn 2 A n f!g; и xn ! !.
|
|
|
) |
|
! |
|
|
|
9 |
= |
f(x) = |
1 |
(f(xn) |
1 |
) |
|
15 |
|
|
|
(f(xn) + g(xn) |
|
|
; |
)) : |
g(x) = |
|
1 |
) |
(g(xn) |
! 1 |
) |
|
|
|
= |
|
|
|
= |
|
|
|
|
|
|
|
|
! 1 |
|
|
|
|
|
|
|
|
|
|
|
Из выделенного синим цветом следует, по
определению Гейне, что lim (f(x) + g(x)) =
x!!
1:
First Prev Next Last Go Back Full Screen Close Quit
Теорема 38. Если lim f(x) = 1 и функция
x!!
g ограниченная вблизи !, то
lim (f(x) + g(x)) = 1:
x!!
First Prev Next Last Go Back Full Screen Close Quit
Доказательство.
lim |
|
|
|
1 |
|
|
=? |
|
x |
! |
! f(x) = |
|
|
|
|
|
lim |
(f(x) + g(x)) = |
|
=) |
|
(g - ограниченная |
вблизи |
!) |
|
|
|
|
x |
! |
! |
|
|
|
|
|
) |
) : |
|
|
|
|
|
|
f(xn!) + g(xn) |
(8(xn); xn 2 A n f!g; и xn |
!1: |
|
|
|
|
|
|
|
|
|
|
|
|
! 1 |
First Prev Next Last Go Back Full Screen Close Quit
Фиксируем произвольную (xn); xn 2 A n f!g;
и xn |
|
|
!. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
x |
! |
! |
(!) = |
1 |
|
|
|
|
76 |
|
|
|
( n) |
! |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
) |
|
|
|
(f x |
|
|
|
) |
> |
|
|
lim f x |
|
|
|
|
|
|
|
= |
|
|
|
|
|
|
|
|
|
|
|
> |
|
|
|
|
|
|
R |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
> |
|
|
(g - ограниченная вблизи !) |
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= |
|
|
= |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
> |
|
|
|
M |
|
|
и U (!) такие, что |
|
x |
A |
|
|
U (!) : jg(x)j |
|
|
M |
|
> |
|
|
(xn |
|
!) |
|
|
|
|
|
8 |
= |
19 |
\ |
|
|
|
|
|
|
|
|
|
> |
) |
9 2 |
|
|
|
|
|
|
|
опр.2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
> |
|
|
! |
|
|
|
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
> |
|
|
|
|
|
9 |
|
|
|
2 |
|
|
|
|
8 |
|
|
|
|
2 |
|
|
|
|
|
|
|
> |
|
|
|
|
|
( N = N( ) |
|
N такое, что |
|
n > N : xn |
|
U (!)) > |
|
|
|
|
|
(f(xn) |
! 1 |
|
|
|
|
|
|
) |
|
|
|
|
|
|
|
|
! 1 |
|
|
|
|
|
|
|
|
|
) |
|
|
|
|
|
16 |
(f(x |
) + g(x |
) |
|
|
> |
|
) : |
|
|
|
|
|
((g(xn)) |
- ограниченная) |
= |
|
|
; |
|
|
|
|
|
|
|
n |
|
|
|
|
n |
|
|
|
|
|
|
|
Из выделенного синим цветом следует, по
определению Гейне, что lim (f(x) + g(x)) =
x!!
1:
First Prev Next Last Go Back Full Screen Close Quit