Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
24
Добавлен:
21.12.2022
Размер:
4.34 Mб
Скачать

3D Cadastre

September, 2004

Cover design: Axel Smits

This PhD thesis is published under the same title in the series:

Publications on Geodesy 57

ISBN 90 6132 286 3

NCG, Netherlands Geodetic Commission

P.O. Box 5058

Delft, the Netherlands

E-mail: ncg@lr.tudelft.nl

Website: www.ncg.knaw.nl

3D Cadastre

Proefschrift

ter verkrijging van de graad van doctor aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema, voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op maandag 13 september 2004 te 10:30 uur

door

Jantine Esther STOTER

doctorandus Fysische Geografie

geboren te Hoogeveen

Dit proefschrift is goedgekeurd door de promotoren:

Prof.dr.ir. P.J.M. van Oosterom

Prof.dr. J. de Jong

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter

Prof.dr.ir. P.J.M. van Oosterom, Technische Universiteit Delft, promotor Prof.dr. J. de Jong, Technische Universiteit Delft, promotor

Prof.dr. P.J. Boelhouwer, Technische Universiteit Delft Prof.dr.tech. H.E. Mattsson, Royal Insitute of Technology, Sweden Prof.dr.ir. M. Molenaar, ITC

Prof.dr. H.F.L. Ottens, Universiteit Utrecht

Dr.ir. M.A. Salzmann, Kadaster, Apeldoorn

Dr. H.D. Ploeger heeft als begeleider in belangrijke mate aan de totstandkoming van het proefschrift bijgedragen.

Acknowledgements

I could never have finished this work without the support of a group of very pleasant people and I feel privileged that I was able to work with them. I would like to thank all the people who contributed either directly or indirectly to this work. However, there are a few people who I would like to specifically mention here.

First of all I would like to thank Peter van Oosterom. His enthusiasm stimulated me to do this research with great enjoyment and our discussions were very inspiring for me. Hendrik Ploeger contributed largely to this thesis by discussing my findings using his juridical expertise. I would like to thank Sisi Zlatanova because we collaborated (from my side with great pleasure) on di erent topics of this thesis. Wilko Quak and Theo Thijssen were indispensable during my research because they were always available assisting me in all kinds of technical issues (they never said ‘no’, ‘maybe’ or ‘later’). Marian de Vries supported me in the Internet part of my research. I cooperated with Ben Gorte on the terrain modelling issues. I am grateful to Jitkse de Jong for giving me supervision on juridical matters. Axel Smits assisted me in preparing the illustrations in this thesis, he also designed the cover.

I would like to thank all other members of the section GIS technology as well as the members of the section Geo-information and Land Development because they contributed to the motivating environment in which I was able to perform this research.

The Kadaster cooperated in this research by providing me with data and by discussions on data models and on research developments. I am grateful to the following persons of the Netherlands’ Kadaster: Auke Hoekstra, Zacharias Klaasse, Martin Salzmann, and Berry van Osch. Piet Beekman from the cadastral o ce in ZuidHolland was very valuable because he provided me with all the cadastral information needed for the Dutch case studies.

I worked with people from the Danish cadastre (KMS) in Copenhagen and the Centre for 3D GeoInformation in Aalborg on the case study in Denmark.

The following persons provided me with useful comments about the contents of this thesis: Elfriede Fendel, Hans-Gerd Maas and Jaap Zevenbergen.

Rod Thompson of the Department of Natural Resources, Mines and Energy (Queensland Government) provided me with data sets needed for the Queensland case study. Moreover, Rod did a great job because he gave me advice on the English text of this thesis. Also George Sithole: thanks for your suggestions on the English text.

I thank the companies Laser-Scan, Oracle, ESRI and Bentley for their collaboration in this research and because I was able to use their software. In addition they gave me advice on technical issues.

I appreciate the contribution of the NAM (Nederlandse Aardolie Maatschappij), the project-team of the HSL-Zuid and the Bouwdienst van Rijkswaterstaat because they provided me with 3D data on physical constructions for the case studies. AGI (Adviesdienst Geo-informatie en ICT) provided me with point heights of case study areas.

Calin Arens, Friso Penninga and Erik van Nieuwburg contributed to several issues in this thesis (respectively the polyhedron implementation, the e ective filtering of a TIN and the Internet application to query a database) as part of their MSc programme, Friso the last few months as a colleague.

Finally there are a number of people who supported me in finishing this thesis in a more indirect way. To have these people around me give me the possibility to explore and experience the things in life that are essential to me. First of all I would like to thank Riet, Roel, Suzan and Marije (my family). They gave me the possibility in the first place to start my education and study and they always support me in doing what I find important to do. Secondly, I would like to thank all my inspiring friends who I either meet frequently or rarely. These contacts were very important to me during my research. There are two people who I like to mention specifically. Madeleine was essential for me during this period because of our spiritual discussions, her stimulation, and laughter. Finally, Gerbert, my soulmate, was of great importance to me because of his practical and mental support, his encouragement and understanding.

Contents

1 Introduction

1

1.1

Need for a 3D cadastre . . . . . . . . . . . . . . . . . . . . . . . . . . .

3

1.2

Research scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

 

1.2.1 Topics within the scope of this thesis . . . . . . . . . . . . . . .

7

 

1.2.2 Topics outside the scope of this thesis . . . . . . . . . . . . . .

9

1.3

Research approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

 

1.3.1

Research objectives . . . . . . . . . . . . . . . . . . . . . . . . .

9

 

1.3.2

Research methods . . . . . . . . . . . . . . . . . . . . . . . . .

10

1.4

Previous and related research . . . . . . . . . . . . . . . . . . . . . . .

11

 

1.4.1 Related research on 3D cadastres . . . . . . . . . . . . . . . . .

11

 

1.4.2 Related research on 3D tools and 3D modelling . . . . . . . . .

11

1.5

Contribution of the work . . . . . . . . . . . . . . . . . . . . . . . . . .

12

1.6

Organisation of the thesis . . . . . . . . . . . . . . . . . . . . . . . . .

13

I Analysis of the background

17

2 Current cadastral registration of 3D situations in the Netherlands

19

2.1

Di erent types of cadastral registrations . . . . . . . . . . . . . . . . .

20

2.2

The Netherlands’ Kadaster . . . . . . . . . . . . . . . . . . . . . . . .

24

 

2.2.1 Organisation of the Netherlands’ Kadaster . . . . . . . . . . . .

24

 

2.2.2 Public Registers and cadastral registration . . . . . . . . . . .

25

 

2.2.3 Cadastral model . . . . . . . . . . . . . . . . . . . . . . . . . .

25

 

2.2.4 Mapping real world objects . . . . . . . . . . . . . . . . . . . .

26

2.3

3D registration and Private Law . . . . . . . . . . . . . . . . . . . . .

27

i

CONTENTS

 

2.3.1

Right of ownership . . . . . . . . . . . . . . . . . . . . . . . . .

27

 

2.3.2

Right of superficies . . . . . . . . . . . . . . . . . . . . . . . . .

30

 

2.3.3 Right of long lease . . . . . . . . . . . . . . . . . . . . . . . . .

31

 

2.3.4

Right of easement . . . . . . . . . . . . . . . . . . . . . . . . .

31

 

2.3.5

Apartment right . . . . . . . . . . . . . . . . . . . . . . . . . .

32

 

2.3.6

Joint ownership . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

2.4

3D registration and Public Law . . . . . . . . . . . . . . . . . . . . . .

34

 

2.4.1

Belemmeringenwet Privaatrecht . . . . . . . . . . . . . . . . . .

35

 

2.4.2

Law on Monuments . . . . . . . . . . . . . . . . . . . . . . . .

37

 

2.4.3 Law on Soil Protection . . . . . . . . . . . . . . . . . . . . . . .

38

2.5

Other relevant aspects of cadastral registration . . . . . . . . . . . . .

38

 

2.5.1 Underground objects in the cadastral registration . . . . . . . .

38

 

2.5.2 Parcels and part parcels . . . . . . . . . . . . . . . . . . . . . .

39

 

2.5.3 Frequency of types of cadastral recordings . . . . . . . . . . . .

40

2.6

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

41

3 Current practice of 3D registration: case studies

45

3.1

Building complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

46

 

3.1.1

Case study 1: Building complex in The Hague . . . . . . . . .

46

 

3.1.2

Case study 2: The Hague Central Station . . . . . . . . . . . .

47

 

3.1.3

Case study 3: Apartment complex . . . . . . . . . . . . . . . .

49

3.2

Subsurface infrastructure objects . . . . . . . . . . . . . . . . . . . . .

51

3.2.1Case study 4: Railway tunnel and station in urban area . . . . 52

 

3.2.2

Case study 5: Railway tunnel in rural area . . . . . . . . . . .

54

 

3.2.3

Case study 6: Utility pipelines . . . . . . . . . . . . . . . . . .

55

3.3

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

57

4 3D cadastre abroad

59

4.1

3D cadastral registrations abroad . . . . . . . . . . . . . . . . . . . . .

59

4.2

Evaluating 3D cadastral issues in the Netherlands . . . . . . . . . . .

62

4.3

Denmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

63

 

4.3.1 Evaluating 3D cadastral issues in Denmark . . . . . . . . . . .

64

4.4

Norway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

65

ii

 

 

CONTENTS

 

4.4.1 Evaluating 3D cadastral issues in Norway . . . . . . . . . . . .

67

4.5

Sweden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

68

 

4.5.1 Evaluating 3D cadastral issues in Sweden . . . . . . . . . . . .

70

4.6

Queensland, Australia . . . . . . . . . . . . . . . . . . . . . . . . . . .

70

 

4.6.1 Restricted, building and volumetric parcels . . . . . . . . . . .

71

 

4.6.2 A case study in Queensland . . . . . . . . . . . . . . . . . . . .

73

 

4.6.3 Evaluating 3D cadastral issues in Queensland . . . . . . . . . .

74

4.7

British Columbia, Canada . . . . . . . . . . . . . . . . . . . . . . . . .

76

 

4.7.1 Evaluating 3D cadastral issues in British Columbia . . . . . . .

77

4.8

Israel .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

78

 

4.8.1 Evaluating 3D cadastral issues in Israel . . . . . . . . . . . . .

79

4.9

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

80

5 Needs and opportunities for a 3D cadastre

83

5.1

Current cadastral registration of 3D situations in the Netherlands . . .

84

5.2

Complexities of current cadastral registration . . . . . . . . . . . . . .

85

 

5.2.1 Complexities of current Dutch cadastral registration . . . . . .

86

 

5.2.2 Locating infrastructure objects in the current cadastre . . . . .

88

5.3

Basic needs for a 3D cadastre . . . . . . . . . . . . . . . . . . . . . . .

89

5.4

Opportunities for a 3D cadastre . . . . . . . . . . . . . . . . . . . . . .

91

5.5

3D applications outside the cadastral domain . . . . . . . . . . . . . .

92

5.6

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

94

II Framework for modelling 2D and 3D situations

97

6 Theory of spatial data modelling

99

6.1

Data models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

99

 

6.1.1 Data models in GIS . . . . . . . . . . . . . . . . . . . . . . . .

101

 

6.1.2 Design phases in modelling . . . . . . . . . . . . . . . . . . . .

103

6.2

Conceptual model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

103

6.3

Logical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

104

 

6.3.1

Relational model . . . . . . . . . . . . . . . . . . . . . . . . . .

104

 

6.3.2

Object oriented model . . . . . . . . . . . . . . . . . . . . . . .

105

iii

CONTENTS

 

6.3.3

Object relational model . . . . . . . . . . . . . . . . . . . . . .

107

6.4

Physical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

108

6.5

UML .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

109

6.6

Spatial data modelling and DBMS . . . . . . . . . . . . . . . . . . . .

112

6.7

Standardisation initiatives . . . . . . . . . . . . . . . . . . . . . . . . .

113

 

6.7.1

OpenGIS Consortium . . . . . . . . . . . . . . . . . . . . . . .

114

 

6.7.2

ISO TC/211 . . . . . . . . . . . . . . . . . . . . . . . . . . . .

117

 

6.7.3

CEN/TC 287 . . . . . . . . . . . . . . . . . . . . . . . . . . . .

119

6.8

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

119

7 Geo-DBMSs

121

7.1

Geometrical primitives in DBMSs . . . . . . . . . . . . . . . . . . . . .

122

 

7.1.1 2D geometrical primitives in DBMSs . . . . . . . . . . . . . . .

122

 

7.1.2 3D geometrical primitives in DBMSs . . . . . . . . . . . . . . .

124

7.2

Topological structure in DBMSs . . . . . . . . . . . . . . . . . . . . .

127

 

7.2.1 OGC, ISO and planar partition topology . . . . . . . . . . . .

128

7.2.2User-defined DBMS implementation of 2D topological structure 129

7.2.3Commercial DBMS implementation of 2D topological structure 138

7.2.4User-defined DBMS implementation of 3D topological structure 139

7.3

Spatial analyses in DBMSs . . . . . . . . . . . . . . . . . . . . . . . .

141

 

7.3.1 2D spatial analyses using geometrical primitives . . . . . . . .

142

 

7.3.2 3D spatial analyses using geometrical primitives . . . . . . . .

144

 

7.3.3 Spatial analyses using the topological structure . . . . . . . . .

145

 

7.3.4

Case study: topological structure or geometrical primitives? . .

146

7.4

Implementation of a 3D geometrical primitive in a DBMS . . . . . . .

148

 

7.4.1 Definition of 3D primitive . . . . . . . . . . . . . . . . . . . . .

149

 

7.4.2

Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

152

 

7.4.3 Spatial indexing in 3D . . . . . . . . . . . . . . . . . . . . . . .

156

 

7.4.4

3D functions . . . . . . . . . . . . . . . . . . . . . . . . . . . .

158

7.5

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

159

8 3D GIS and accessing a 3D geo-DBMS with front-ends

163

8.1

3D GIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

164

iv