
- •1. Биология – ее определение, предмет, задачи и методы.
- •2. Сущность жизни и свойства живых систем.
- •3. Уровни организации живых систем. Характерные черты живых систем, отличающие их от неживых.
- •4. Царства живого. Фундаментальные признаки биологической организации, определяющие разделение организмов на царства.
- •5. Основные различия между прокариотическими и эукариотическими организмами.
- •6. Основные сходства и различия между растительными и животными клетками.
- •7.Генетика, ее возникновение и предмет изучения
- •8. Методы генетических исследований, их теоретическое и прикладное значение.
- •9. Гибридологический анализ в генетике. Законы Менделя, их цитологический механизм и объяснение.
- •Первый закон Менделя - закон единообразия.
- •Второй закон Менделя - закон расщепления.
- •Третий закон Менделя - закон независимого наследования
- •10.Основные этапы эволюции органического мира. Геохронологическая шкала.
- •11.Основные типы взаимодействия аллельных генов.
- •12.Основные типы взаимодействия неаллельных генов
- •13. Строение молекулы днк (модель Уотсона-Крика), ее биологическое значение.
- •14. Генетический код, его основные свойства.
- •15. Строение и функции хромосом. Понятие о кариотипе. Цитогенетические методы исследования.
- •16. Жизненный цикл клетки. Основные процессы жизненного цикла.
- •17. Периоды интерфазы. Основные процессы и изменения в строении хромосом, происходящие в этих периодах.
- •18.Понятие о митозе, основные фазы и процессы, в них происходящие. Биологическое значение митоза.
- •19.Понятие о мейозе, основные фазы и процессы, в них происходящие. Биологическое значение мейоза.
- •20.Явление сцепления генов. Опыты т. Моргана, доказывающие сцепленное наследование. Основные положения хромосомной теории наследственности.
- •21.Понятие о кроссинговере. Когда и где происходит, результат и биологическое значение.
- •22.Сцепление с полом наследование. Хромосомный механизм определения пола.
- •23.Наследование качественных признаков.
- •24.Классификация наследственной (генотипической) изменчивости. Закон гомологических рядов наследственной изменчивости н.И. Вавилова.
- •25.Частоты фенотипов и генотипов и аллелей. Закон Харди-Вайнберга, условия его выполнения и причины нарушения.
- •26.Изменчивость и наследственность – основа развития и эволюции.
- •27.Палеонтологические методы изучения эволюции.
- •28. Морфологические методы изучения эволюции.
- •29.Использование данных эмбриологии и систематики как доказательств эволюции.
- •30.Использование данных генетики и селекции, биохимии и физиологии для доказательства эволюции.
- •31.Возникновение синтетической теории эволюции. Основные положения стэ и современные эволюционные представления.
- •32.Происхождение органических веществ и основные направления предбиологической эволюции.
- •33.Теория биохимической эволюции. Основные этапы возникновения жизни по этой теории. Гипотеза Опарина-Холдейна, ее доказательства и недостатки.
- •34. Понятие о коацерватах и протобионтах. Особенности протобионтов, условия их появления
- •35. Основные направления в эволюции животных. Геохронологические эры и периоды возникновения основных типов и классов животных
- •36. Предпосылки антропогенеза. Основные этапы эволюции человека.
- •Этапы становления человека
- •Природные, биологические и социальные предпосылки антропогенеза.
- •37. Популяция как элементарная эволюционная единица. Основы популяционной генетики.
- •38. Мутации как элементарный эволюционный материал. Классификация мутаций
- •39. Элементарные факторы эволюции: поставляющие эволюционный материал, усиливающие различия и направляющие действие эволюции.
- •40. Естественный отбор как движущий и направляющий фактор эволюции. Предпосылки естественного отбора и его творческая роль.
- •41. Основные формы естественного отбора, результат их действия.
- •42. Изоляция как элементарный фактор эволюции.
- •44. Мутационный процесс как элементарный фактор эволюции.
- •46.Предпосылки возникновения рептилий. Время появления (эра, период), соответствующие геологические и климатические условия. Основные группы рептилий (особенности строения).
- •47.Характеристика первых птиц (систематическое положение, особенности строения, представители). Время появления (эра, период), соответствующие геологические и климатические условия.
- •48.Характеристика первых млекопитающих (систематическое положение, особенности строения, представители). Время появления (эра, период), соответствующие геологические и климатические условия.
- •49. Понятие об экологических факторах, их классификация. Закономерности воздействия экологических факторов на организмы.
- •50. Трофическая структура экосистем. Цепи питания.
- •51. Связи организмов в экосистемах, их роль и значение в поддержании стабильности экосистем.
8. Методы генетических исследований, их теоретическое и прикладное значение.
Гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений.
Отличительные особенности метода:
целенаправленный подбор родителей, различающихся по одной, двум, трём и т. д. парам альтернативных признаков;
строгий количественный учёт наследования признаков у гибридов;
индивидуальная оценка потомства от каждого родителя в ряду поколений.
С помощью скрещивания можно установить: доминантен или рецессивен исследуемый признак (и соответствующий ему ген); генотип организма; взаимодействие генов и характер этого взаимодействия; сцепление генов с полом и т. д. Метод имеет один недостаток – его нельзя использовать в исследовании людей, так как скрещивать homo sapiens в эксперименте не представляется возможным.
Генеалогический метод — составление родословной и её анализ. Анализ родословных применяется для организмов, у которых невозможно скрещивание (человек) или размножение происходит медленно. С помощью этого метода можно установить особенности наследования признаков. Если признак проявляется в каждом поколении, то он доминантный; если признак проявляется через поколение, то он рецессивный. Если признак чаще проявляется у одного пола, то это признак, сцепленный с полом. Так устанавливают наследование индивидуальных особенностей человека: черт лица, роста, группы крови, умственного и психического склада, а также некоторых заболеваний.
Близнецовый метод — изучение проявления признаков у однояйцевых и разнояйцевых близнецов. Близнецовый метод позволяет изучать роль генотипа и среды в формировании конкретных признаков организма. Однояйцевые близнецы имеют одинаковый генотип, поэтому они всегда одного пола и похожи друг на друга. Различия, которые возникают у таких близнецов в течение жизни, связаны с воздействием условий окружающей среды.
Цитогенетический метод — микроскопическое изучение числа, формы и размеров хромосом в делящихся клетках организма. Исследование кариотипа организма с помощью микроскопа используется для установления геномных и хромосомных мутаций.
Популяционно-статистический метод — анализ частоты встречаемости генов и генотипов в популяции. Этот метод даёт информацию об эволюции вида, позволяет прогнозировать количество особей с мутациями. Состоит в определении частоты гена в популяции согласно закону Харди-Вайнберга. На основе данного метода оценивают распределение особей разных генотипов, анализируют динамику генетической структуры популяций под действием различных факторов. Например, ген дальтонизма: проявляется больше у мужчин – до 7-8% (у женщин – 0,5%, хотя носителями гена являются 13%).
Биохимический метод — анализ состава веществ, содержащихся в организме, и биохимических реакций, протекающих в его клетках. Этим методом можно устанавливать функцию гена, изучать нарушения обмена веществ. Этот метод позволяет установить болезнь на ранней стадии и лечить ее. Скрининг на биохимические маркеры генетических болезней является сейчас обязательным для новорождённых.
Молекулярно-генетический метод — расшифровка геномов организма. Устанавливается последовательность нуклеотидов в ДНК организма. Сегодня молекулярно-генетические методы используются для диагностики более 300 наследственных болезней: гемофилии, гемоглобинопатий, митохондриальных болезней, муковисцедозе и т.д.
Дерматоглифический метод. Предметизучения – рисунки на ладонях, подошвах и пальцах. При хромосомных заболеваниях рисунки изменяются, например, обезьянья складка на ладони при болезни Дауна.
Метод генной инженерии – с его помощью ученые изменяют генотипы организмов: удаляют и перестраивают определенные гены, вводят другие, соединяют в генотипе одной особи гены различных видов и т.д.
Метод моделирования –изучает болезни человека на животных. В основе этого метода лежит закон Вавилова. Суть закона состоит в том, что виды и роды, близкие генетически, связанные единством происхождения, характеризуются сходными рядами наследственной изменчивости.
Задачи и значение генетики. Генетика решает ряд фундаментальных и прикладных задач. Она ставит своей целью познание закономерностей наследственности и изменчивости, а также изыскание путей практического использования этих закономерностей.