
- •1. Биология – ее определение, предмет, задачи и методы.
- •2. Сущность жизни и свойства живых систем.
- •3. Уровни организации живых систем. Характерные черты живых систем, отличающие их от неживых.
- •4. Царства живого. Фундаментальные признаки биологической организации, определяющие разделение организмов на царства.
- •5. Основные различия между прокариотическими и эукариотическими организмами.
- •6. Основные сходства и различия между растительными и животными клетками.
- •7.Генетика, ее возникновение и предмет изучения
- •8. Методы генетических исследований, их теоретическое и прикладное значение.
- •9. Гибридологический анализ в генетике. Законы Менделя, их цитологический механизм и объяснение.
- •Первый закон Менделя - закон единообразия.
- •Второй закон Менделя - закон расщепления.
- •Третий закон Менделя - закон независимого наследования
- •10.Основные этапы эволюции органического мира. Геохронологическая шкала.
- •11.Основные типы взаимодействия аллельных генов.
- •12.Основные типы взаимодействия неаллельных генов
- •13. Строение молекулы днк (модель Уотсона-Крика), ее биологическое значение.
- •14. Генетический код, его основные свойства.
- •15. Строение и функции хромосом. Понятие о кариотипе. Цитогенетические методы исследования.
- •16. Жизненный цикл клетки. Основные процессы жизненного цикла.
- •17. Периоды интерфазы. Основные процессы и изменения в строении хромосом, происходящие в этих периодах.
- •18.Понятие о митозе, основные фазы и процессы, в них происходящие. Биологическое значение митоза.
- •19.Понятие о мейозе, основные фазы и процессы, в них происходящие. Биологическое значение мейоза.
- •20.Явление сцепления генов. Опыты т. Моргана, доказывающие сцепленное наследование. Основные положения хромосомной теории наследственности.
- •21.Понятие о кроссинговере. Когда и где происходит, результат и биологическое значение.
- •22.Сцепление с полом наследование. Хромосомный механизм определения пола.
- •23.Наследование качественных признаков.
- •24.Классификация наследственной (генотипической) изменчивости. Закон гомологических рядов наследственной изменчивости н.И. Вавилова.
- •25.Частоты фенотипов и генотипов и аллелей. Закон Харди-Вайнберга, условия его выполнения и причины нарушения.
- •26.Изменчивость и наследственность – основа развития и эволюции.
- •27.Палеонтологические методы изучения эволюции.
- •28. Морфологические методы изучения эволюции.
- •29.Использование данных эмбриологии и систематики как доказательств эволюции.
- •30.Использование данных генетики и селекции, биохимии и физиологии для доказательства эволюции.
- •31.Возникновение синтетической теории эволюции. Основные положения стэ и современные эволюционные представления.
- •32.Происхождение органических веществ и основные направления предбиологической эволюции.
- •33.Теория биохимической эволюции. Основные этапы возникновения жизни по этой теории. Гипотеза Опарина-Холдейна, ее доказательства и недостатки.
- •34. Понятие о коацерватах и протобионтах. Особенности протобионтов, условия их появления
- •35. Основные направления в эволюции животных. Геохронологические эры и периоды возникновения основных типов и классов животных
- •36. Предпосылки антропогенеза. Основные этапы эволюции человека.
- •Этапы становления человека
- •Природные, биологические и социальные предпосылки антропогенеза.
- •37. Популяция как элементарная эволюционная единица. Основы популяционной генетики.
- •38. Мутации как элементарный эволюционный материал. Классификация мутаций
- •39. Элементарные факторы эволюции: поставляющие эволюционный материал, усиливающие различия и направляющие действие эволюции.
- •40. Естественный отбор как движущий и направляющий фактор эволюции. Предпосылки естественного отбора и его творческая роль.
- •41. Основные формы естественного отбора, результат их действия.
- •42. Изоляция как элементарный фактор эволюции.
- •44. Мутационный процесс как элементарный фактор эволюции.
- •46.Предпосылки возникновения рептилий. Время появления (эра, период), соответствующие геологические и климатические условия. Основные группы рептилий (особенности строения).
- •47.Характеристика первых птиц (систематическое положение, особенности строения, представители). Время появления (эра, период), соответствующие геологические и климатические условия.
- •48.Характеристика первых млекопитающих (систематическое положение, особенности строения, представители). Время появления (эра, период), соответствующие геологические и климатические условия.
- •49. Понятие об экологических факторах, их классификация. Закономерности воздействия экологических факторов на организмы.
- •50. Трофическая структура экосистем. Цепи питания.
- •51. Связи организмов в экосистемах, их роль и значение в поддержании стабильности экосистем.
32.Происхождение органических веществ и основные направления предбиологической эволюции.
Возникновение органических соединений в природе без участия живой материи (т. е. в те времена, когда на Земле еще не было жизни) называется абиотическим процессом в отличие от биотического процесса — возникновения органических соединений внутри живых клеток.
Химическая эволюция или пребиотическая эволюция — первый этап эволюции жизни, в ходе которого органические, пребиотические вещества возникли из неорганических молекул под влиянием внешних энергетических и селекционных факторов и в силу развёртывания процессов самоорганизации, свойственных всем относительно сложным системам, к которым относится большинство углеродосодержащих молекул.
Также этими терминами обозначается теория возникновения и развития тех молекул, которые имеют принципиальное значение для возникновения и развития живого вещества.
Генобиоз и голобиоз
В зависимости от того, что считается первичным, различают два методологических подхода к вопросу возникновения жизни:
Генобиоз — методологический подход в вопросе происхождения жизни, основанный на убеждении в первичности молекулярной системы со свойствами первичного генетического кода.
Голобиоз — методологический подход в вопросе происхождения жизни, основанный на идее первичности структур, наделённых способностью к элементарному обмену веществ при участии ферментного механизма.
Мир РНК как предшественник современной жизни
К XXI веку теория Опарина—Холдейна, предполагающая изначальное возникновение белков, практически уступила место современной гипотезе мира РНК. Толчком к её разработке послужило открытие рибозимов — молекул РНК, обладающих ферментативной активностью и поэтому способных соединять в себе функции, которые в настоящих клетках в основном выполняют по отдельности белки и ДНК, то есть катализирование биохимических реакций и хранение наследственной информации. Таким образом, предполагается, что первые живые существа были РНК-организмами без белков и ДНК, а прообразом их мог стать автокаталитический цикл, образованный рибозимами, способными катализировать синтез своих собственных копий. Сахара, необходимые для синтеза РНК, в частности, рибоза, обнаружены в метеоритах и наверняка присутствовали в то время на Земле.
Мир полиароматических углеводородов как предшественник мира РНК
Гипотеза мира полиароматических углеводородов пытается ответить на вопрос, как возникли первые РНК, предлагая вариант химической эволюции от полициклических ароматических углеводородов до РНК-подобных цепочек.
33.Теория биохимической эволюции. Основные этапы возникновения жизни по этой теории. Гипотеза Опарина-Холдейна, ее доказательства и недостатки.
Согласно теории биохимической эволюции формирование жизни на Земле шло в три этапа:
- абиогенный синтез органических веществ; - образование биополимеров;
- формирование мембранных структур и появление самовоспроизведения.
Абиогенный синтез органических веществ
Согласно теории Опарина возникновение жизни на Земле могло произойти только в условиях бескислородной атмосферы.
На первых этапах своего существования наша Земля представляла собой раскалённый шар. По мере её остывания постепенно формировалась первичная атмосфера (из аммиака, метана, углекислого газа, цианистого водорода, паров воды). Кислорода и озона в атмосфере древней Земли не было.
При дальнейшем понижении температуры образовался первичный океан. Под действием различных видов энергии (электрические разряды, ядерные реакции, солнечная радиация, извержения вулканов) образовались простые органические соединения: формальдегид, спирты, муравьиная кислота, аминокислоты и т. д.
Окисление образовавшихся веществ не происходило, так как отсутствовал свободный кислород. Синтезированные вещества в течение десятков миллионов лет постепенно накапливались в древнем океане. Их накопление в итоге привело к образованию однородной массы — «первичного бульона». По мнению Опарина, именно в «первичном бульоне» и возникла жизнь.
Этот этап биохимической эволюции был подтверждён экспериментально биохимиками С. Миллером, Дж. Оро и другими учёными. В экспериментальных установках, моделирующих условия первобытной Земли, ими были получены альдегиды, аминокислоты, простые сахара, пуриновые и пиримидиновые основания, нуклеотиды.
Образование биополимеров
Аминокислоты соединялись в полипептиды, простые сахара превращались в полисахариды, а нуклеотиды — в нуклеиновые кислоты. Карбоновые кислоты, соединяясь со спиртами, могли образовать липиды, которые покрывали поверхность водоёмов жирной плёнкой.
Возникшие белки формировали коллоидные комплексы, притягивающие к себе молекулы воды. Так появились коацерваты — сгустки органических веществ, обособленные от остальной массы воды. В коацерваты постоянно поступали органические соединения, в результате чего происходил синтез более сложных веществ. Они могли сливаться и увеличиваться в размерах.
Образование биополимеров и коацерватов в условиях древней Земли подтверждено экспериментально работами Л. Орджела и С. Акабори. Ими были получены простейшие белки и нуклеотидные цепи.
Формирование мембранных структур и появление самовоспроизведения
Из липидных плёнок на поверхности коацерватов могла сформироваться биологическая мембрана.
Объединение коацерватов с нуклеиновыми кислотами привело к образованию примитивных самовоспроизводящихся живых организмов — пробионтов. Эти первичные организмы были анаэробами и гетеротрофами и питались веществами «первичного бульона».
Недостатки гипотезы Опарина-Холдейна:
- Неясно как произошел качественный скачок от неживого к живому. Вероятность случайного образования белковой молекулы, в зависимости от сложности белка составляет примерно 10-500 – 10-300 -Для самопродукции нуклеиновых кислот необходимы ферментные белки, а для синтеза белков – нуклеиновые кислоты. - Отсутствие объяснения возникновения механизма коацерватов полноценной, сформированной клетки.
- Отсутствие объяснения появления способности к самовоспроизведению тоже смущает ученых и оставляет вопрос открытым.
- Момент образования белковых структур имеет очень грубую неточность- как аминокислоты без участия ферментов смогли образовать эти самые белковые структуры? Как образовались первые ферменты? На каком этапе это произошло и что стало толчком к этому?