
- •1. Биология – ее определение, предмет, задачи и методы.
- •2. Сущность жизни и свойства живых систем.
- •3. Уровни организации живых систем. Характерные черты живых систем, отличающие их от неживых.
- •4. Царства живого. Фундаментальные признаки биологической организации, определяющие разделение организмов на царства.
- •5. Основные различия между прокариотическими и эукариотическими организмами.
- •6. Основные сходства и различия между растительными и животными клетками.
- •7.Генетика, ее возникновение и предмет изучения
- •8. Методы генетических исследований, их теоретическое и прикладное значение.
- •9. Гибридологический анализ в генетике. Законы Менделя, их цитологический механизм и объяснение.
- •Первый закон Менделя - закон единообразия.
- •Второй закон Менделя - закон расщепления.
- •Третий закон Менделя - закон независимого наследования
- •10.Основные этапы эволюции органического мира. Геохронологическая шкала.
- •11.Основные типы взаимодействия аллельных генов.
- •12.Основные типы взаимодействия неаллельных генов
- •13. Строение молекулы днк (модель Уотсона-Крика), ее биологическое значение.
- •14. Генетический код, его основные свойства.
- •15. Строение и функции хромосом. Понятие о кариотипе. Цитогенетические методы исследования.
- •16. Жизненный цикл клетки. Основные процессы жизненного цикла.
- •17. Периоды интерфазы. Основные процессы и изменения в строении хромосом, происходящие в этих периодах.
- •18.Понятие о митозе, основные фазы и процессы, в них происходящие. Биологическое значение митоза.
- •19.Понятие о мейозе, основные фазы и процессы, в них происходящие. Биологическое значение мейоза.
- •20.Явление сцепления генов. Опыты т. Моргана, доказывающие сцепленное наследование. Основные положения хромосомной теории наследственности.
- •21.Понятие о кроссинговере. Когда и где происходит, результат и биологическое значение.
- •22.Сцепление с полом наследование. Хромосомный механизм определения пола.
- •23.Наследование качественных признаков.
- •24.Классификация наследственной (генотипической) изменчивости. Закон гомологических рядов наследственной изменчивости н.И. Вавилова.
- •25.Частоты фенотипов и генотипов и аллелей. Закон Харди-Вайнберга, условия его выполнения и причины нарушения.
- •26.Изменчивость и наследственность – основа развития и эволюции.
- •27.Палеонтологические методы изучения эволюции.
- •28. Морфологические методы изучения эволюции.
- •29.Использование данных эмбриологии и систематики как доказательств эволюции.
- •30.Использование данных генетики и селекции, биохимии и физиологии для доказательства эволюции.
- •31.Возникновение синтетической теории эволюции. Основные положения стэ и современные эволюционные представления.
- •32.Происхождение органических веществ и основные направления предбиологической эволюции.
- •33.Теория биохимической эволюции. Основные этапы возникновения жизни по этой теории. Гипотеза Опарина-Холдейна, ее доказательства и недостатки.
- •34. Понятие о коацерватах и протобионтах. Особенности протобионтов, условия их появления
- •35. Основные направления в эволюции животных. Геохронологические эры и периоды возникновения основных типов и классов животных
- •36. Предпосылки антропогенеза. Основные этапы эволюции человека.
- •Этапы становления человека
- •Природные, биологические и социальные предпосылки антропогенеза.
- •37. Популяция как элементарная эволюционная единица. Основы популяционной генетики.
- •38. Мутации как элементарный эволюционный материал. Классификация мутаций
- •39. Элементарные факторы эволюции: поставляющие эволюционный материал, усиливающие различия и направляющие действие эволюции.
- •40. Естественный отбор как движущий и направляющий фактор эволюции. Предпосылки естественного отбора и его творческая роль.
- •41. Основные формы естественного отбора, результат их действия.
- •42. Изоляция как элементарный фактор эволюции.
- •44. Мутационный процесс как элементарный фактор эволюции.
- •46.Предпосылки возникновения рептилий. Время появления (эра, период), соответствующие геологические и климатические условия. Основные группы рептилий (особенности строения).
- •47.Характеристика первых птиц (систематическое положение, особенности строения, представители). Время появления (эра, период), соответствующие геологические и климатические условия.
- •48.Характеристика первых млекопитающих (систематическое положение, особенности строения, представители). Время появления (эра, период), соответствующие геологические и климатические условия.
- •49. Понятие об экологических факторах, их классификация. Закономерности воздействия экологических факторов на организмы.
- •50. Трофическая структура экосистем. Цепи питания.
- •51. Связи организмов в экосистемах, их роль и значение в поддержании стабильности экосистем.
21.Понятие о кроссинговере. Когда и где происходит, результат и биологическое значение.
Кроссинговер - процесс, во время которого гомологичные хромосомы обмениваются определенными участками. Перекрест хромосом приводит новые комбинации (рекомбинации) аллелей различных генов и является важнейшим механизмом обеспечения комбинативной изменчивости в популяциях, который поставляет материал для естественного отбора. Рекомбинация - это перераспределение генетической информации у потомков, в основе которой при сцепленном наследовании лежит кроссинговер (межгенная рекомбинация).
Происходит кроссинговер в профазе I мейоза и после конъюгации приводит к перераспределению генов в хромосомах. Это явление носит случайный характер и может происходить в любом участке гомологичных хромосом.
Хотя частота кроссинговера является величиной постоянной, на нее могут влиять некоторые факторы внешней и внутренней среды: изменения в строении отдельных хромосом, температура, рентгеновские лучи, некоторые химические соединения и др.. У некоторых организмов обнаружена зависимость частоты кроссинговера от возраста (например, у дрозофил) или пола (например, у мышей).
Значение кроссинговера
- роль кроссинговера в увеличении комбинаций генов (комбинативная изменчивость), - благодаря кроссинговеру идет отбор не по целым группам сцепления, а по отдельным генам, - в результате кроссинговера полезные для организма аллели могут быть отделены от вредных - определение частоты кроссинговера лежит в основе картирования генов хромосом, то есть определения места расположения разных генов в хромосоме
22.Сцепление с полом наследование. Хромосомный механизм определения пола.
Наследование признаков, гены которых локализованы в Х- или Y- хромосомах, называют наследованием, сцепленным с полом.
Х-хромосома человека содержит ряд генов, рецессивные аллели которых определяют развитие тяжелых аномалий (гемофилия, дальтонизм). Эти аномалии чаще встречаются у мужчин, хотя носителями чаще бывают женщины. У мужчин эти гены гемизиготны, их рецессивные аллели вызывают заболевания: X hY - мужчина, больной гемофилией; Xd Y- дальтоник.
Известно, что Х-хромосомы генетически активны, как любая из аутосом. Y-хромосомы - генетически инертны, у человека лишь некоторые гены, не являющиеся жизненно важными, локализуются в ней (гипертрихоз - волосатые уши, некоторые формы аллергий, диспепсии),
такие признаки передаются только от отца к сыну. Такой тип наследования по мужской линии называется голандрический.
Законы передачи признаков, сцепленных с Х-хромосомами. Были впервые изучены Т. Морганом на дрозофилах.(ДОП.ИНФА Томас Морган и его сотрудники заметили, что наследование окраски глаз у дрозофилы зависит от пола родительских особей, несущих альтернативные аллели. Красная окраска глаз доминирует над белой.
При скрещивании красноглазого самца с белоглазой самкой в F1, получали равное число красноглазых самок и белоглазых самцов.
Однако при скрещивании белоглазого самца с красноглазой самкой в F1 были получены в равном числе красноглазые самцы и самки. При скрещивании этих мух F1, между собой были получены красноглазые самки, красноглазые и белоглазые самцы, но не было ни одной белоглазой самки.
Тот факт, что у самцов частота проявления рецессивного признака была выше, чем у самок, наводил на мысль, что рецессивный аллель, определяющий белоглазость, находится в Х-хромосоме, а Y-хромосома лишена гена окраски глаз.
Чтобы проверить эту гипотезу, Морган скрестил исходного белоглазого самца с красноглазой самкой из F1. В потомстве были получены красноглазые и белоглазые самцы и самки. Из этого Морган справедливо заключил, что только Х-хромосома несет ген окраски глаз. В Y-хромосоме соответствующего локуса вообще нет.)
Хромосомный механизм определения пола. Согласно хромосомной теории К.Корренса (1907), пол будущего потомка определяется сочетанием половых хромосом в момент определения. Пол, имеющий одинаковые половые хромосомы, называют гомогаметным, так как он дает один тип гамет, а имеющий разные-гетерогаметным, так как он образует два типа гамет. У человека, млекопитающих, мухи дрозофилы гомогаметный пол женский, а гетерогаметный - мужской.
У мужского пола в процессе гаметогенеза формируется 2 типа гамет в равной пропорции, так как мужской пол - гетерогаметный: Х-сперматозоиды и Y-сперматозоиды.
Поскольку у женского пола половые хромосомы одинаковы, так как женский пол - гомогаметный, то каждая яйцеклетка несет Х-хромосому.
Эта биологическая закономерность, обусловленная механизмом мейоза.