Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ТЕРВЕР alex_sasay

.pdf
Скачиваний:
7
Добавлен:
10.02.2015
Размер:
1.7 Mб
Скачать

Доказательство: следует из свойств 1 и 3.

4.Математическое ожидание суммы двух случайных величин равно сумме их математических ожиданий:

M[X+Y] = M[X]+M[Y]. (6.6)

23Дисперсия случайной величины и ее свойства.

Дисперсия случайной величины есть математическое ожидание квадрата соответствующей центрированной случайной величины.

Она характеризует степень разброса значений случайной величины относительно ее математического ожидания, т.е. ширину диапазона значений.

Расчетные формулы:

(6.9)

Дисперсия может быть вычислена через второй начальный момент:

(6.10)

Дисперсия случайной величины характеризует степень рассеивания (разброса) значений случайной величины относительно ее математического ожидания. Дисперсия СВ (как дискретной, так и непрерывной) есть неслучайная (постоянная) величина.

Дисперсия СВ имеет размерность квадрата случайной величины. Для наглядности характеристики рассеивания пользуются величиной, размерность которой совпадает с размерностью СВ.

Средним квадратическим отклонением (СКО) СВ X называется характеристика

. (6.11)

СКО измеряется в тех же физических единицах, что и СВ, и характеризует ширину диапазона значений СВ.

Свойства дисперсии

Дисперсия постоянной величины с равна нулю.

Доказательство: по определению дисперсии

При прибавлении к случайной величине Х неслучайной величины с ее дисперсия не меняется.

D[X+c] = D[X].

Доказательство: по определению дисперсии

(6.12)

3. При умножении случайной величины Х на неслучайную величину с ее дисперсия умножается на с2.

Доказательство: по определению дисперсии

. (6.13)

Для среднего квадратичного отклонения это свойство имеет вид:

(6.14)

Действительно, при ½С½>1 величина сХ имеет возможные значения (по абсолютной величине), большие, чем величина Х. Следовательно, эти значения рассеяны вокруг математического ожидания М[сХ] больше, чем возможные

значения Х вокруг М[X], т.е. . Если 0<½с½<1, то .

Правило 3s. Для большинства значений случайной величины абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения, или, другими словами, практически все значения СВ находятся в интервале:

[ m - 3s; m + 3s; ].(6.15)

24Моменты высших порядков.

Понятие момента широко применяется в механике для описания распределения масс (статические моменты, моменты инерции и т.д.). Теми же приемами пользуются и в теории вероятностей. Чаще на практике применяются моменты двух видов: начальные и центральные.

Начальный момент s-го порядка СВ X есть математическое ожидание s-й степени этой случайной величины: as = M[Xs].

(6.7)

Математическое ожидание случайной величины является начальным моментом первого порядка

Центрированной случайной величиной называется отклонение случайной величины от ее математического ожидания:

.

Центрирование случайной величины аналогично переносу начала координат в среднюю, «центральную» точку, абсцисса которой равна математическому ожиданию случайной величины.

Центральным моментом s-го порядка СВ X есть математическое ожидание s-й степени центрированной случайной величины: ms = M[(X-mx) s].

(6.8)

Очевидно, что для любой случайной величины Х центральный момент первого порядка равен нулю:

Аналогично можно получить моменты не только относительно начала координат (начальные моменты) или математического ожидания (центральные моменты), но и относительно произвольной точки а.

25Геометрическое распределение.

Дискретная случайная величина X имеет геометрическое распределение, если вероятности ее возможных значений 0,1,….,k,.. определяются так:

где p – параметр распределения, а q=1-p.

0 1 2 … k … p

На практике геометрическое распределение появляется при следующих условиях. Пусть производится некоторый опыт, в котором некоторое событие появляется с вероятностью p. Опыты производятся последовательно, до наступления события. Случайная величина X, равная числу неудачных опытов, имеет геометрическое распределение.

Числовые характеристики геометрического распределения:

26Смещенное геометрическое распределение.

“Смещенное” геометрическое распределение получается из геометрического путем преобразования СВ X и СВ Y=X+1.

Дискретная случайная величина Y имеет смещенное геометрическое распределение если вероятности ее возможных значений 1,…,k, определяются так

где p – параметр распределения а q=1-p.

1 2 3 … k … p

Числовые характеристики смещенного геометрического распределения определяются с использованием их свойств:

27Биномиальное распределение.

Дискретная случайная величина X имеет биноминальное распределение, если ее

закон распределения описывается формулой Бернулли:

где p – параметр распределения

Распределение загасит от двух параметров п и р.

На практике биноминальное распределение возникает при следующих условиях. Пусть производится серия из п испытании, в каждом из которых некоторое событие появляется с вероятностью р. Случайная величина X, равная числу наступлений события в п опытах, имеет биноминальное распределение.

Числовые характеристики: М [Х] = n, D[X]= npq.

Название объясняется тем, что правую часть равенства можно рассматривать как общий член разложения Бинома Ньютона:

,

т.е. .

28Распределение Пуассона.

Соотношениями, описывающими биноминальное распределение, удобно пользоваться в тех случаях, если величина и достаточно мала, а р велико.

Теорема: Если, а так, что то

при любом k=0,1,….

Числовые характеристики: М[Х] = α, D[X] = α.

Закон Пуассона зависит от одного параметра α, смысл которого заключается в следующем: он является одновременно и математическим ожиданием и дисперсией случайной величины Х.

29Простейший поток событий.

Физические условия возникновения распределения.

Рассмотрим временную ось, на которой будем отмечать моменты возникновения случайных событий (например, отказы компонентов в сложном техническом устройстве, заявки на обслуживание).

Поток случайных событий называется стационарным, если число событий, приходящихся на интервал t в общем случае не зависит от расположения этого участка на временной оси и определяется только его длительностью, т.е. среднее число событий в единице времени (l) (интенсивность потока) постоянно.

Поток случайных событий называется ординарным, если вероятность попадания в некоторый участок Dt двух и более случайных событий пренебрежимо мала по сравнению с вероятностью попадания на него одного события.

В потоке отсутствует последействие, если вероятность попадания событий на участок t не зависит от того, сколько событий попало на другие участки, не пересекающиеся с данным.

Поток случайных событий называется простейшим, или Пуассоновским, если он является стационарным, ординарным и без последействия.

Для Пуассоновского потока число событий поступивших в течение интервала t является дискретной случайной величиной с распределением Пуассона с параметром α = tl

30Экспоненциальное распределение случайной величины.

Непрерывная случайная величина Х, принимающая только положительные значения имеет показательное (или экспоненциальное) распределение, если

, (8.8)

Положительная величина l называется параметром показательного распределения и полностью определяет его.

Определим функцию распределения случайной величины.

1. при t<0

,

2. при t≥0

.

Таким образом, функция распределения имеет вид:

(8.9)

Числовые характеристики случайной величины.

.

Проводя интегрирование по частям и учитывая, что при x→∞ e-x стремиться к нулю быстрее, чем возрастает любая степень x , находим:

(8.10)

Дисперсия случайной величины определяем по формуле:

(8.11)

Показательное распределение тесно связано с простейшим (стационарным пуассоновским) потоком событий. Интервал времени T между двумя соседними событиями в простейшем потоке имеет показательное распределение с параметром, равным интенсивности потока.

31Нормальное распределение

Непрерывная случайная величина Х имеет нормальное распределение, если ее

плотность вероятности имеет вид:

(8.12)

Определим числовые характеристики нормально распределенной случайной величины Х. Математическое ожидание:

Применяя замену переменной

(8.13)

получим

В полученном выражении первый интеграл равен нулю (интеграл в симметричных пределах от нечетной функции), а второй интеграл есть интеграл Эйлера-Пуассона:

(8.14)

Таким образом, математическое ожидание величины Х равно m:

M[X]=m.

Вычислим дисперсию СВ Х:

Применяя замену переменной (8.13) получим:

Интегрируя по частям, получим:

Первое слагаемое в фигурных скобках равно нулю (т.к. при t→∞ убывает быстрее, чем возрастает любая степень t), второе слагаемое, согласно (8.14),

равно , откуда

.

Таким образом, нормальное распределение случайной величины полностью описывается двумя числовыми характеристиками: математическим ожиданием M[X] и средним квадратичным отклонением σ.

Рассмотрим влияние параметров m и σ на кривую распределения. При изменении параметра m кривая f(x), не изменяя формы, будет смещаться вдоль оси абсцисс. Изменение σ равносильно изменению масштаба кривой по обеим осям; например, при удвоении σ масштаб по оси абсцисс удвоится, а по оси ординат уменьшится в два раза (рис. 8.3).

Центральные моменты нечетной степени для нормально распределенной случайной величины определяются равны нуню; для вычисления центральных моментов четной степени используется рекуррентное соотношение следующего вида:

(8.15)

Определим вероятность попадания нормально распределенной случайной величины в интервал от α до β:

Сделав замену переменной t=(x-m)/σ, получим:

Так как первообразная для e-x не выражается через элементарные функции, то для вычисления вероятностей событий, связанных с нормальными случайными величинами используют табулированную функцию Лапласа:

.

С помощью этой функции вероятность попадания нормально распределенной случайной величины на интервал от α до β определится так:

(8.16)

Функция Лапласа обладает следующими свойствами:

1.Φ(0)=0;

2.Φ(-х)=-Φ(х);

3.Φ(-∞)=0,5.