Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Manual for the Matlab toolbox EKFUKF.pdf
Скачиваний:
91
Добавлен:
10.02.2015
Размер:
1.54 Mб
Скачать

CHAPTER 4. MULTIPLE MODEL SYSTEMS

Estimates produced by Kalman filter using the model 1.

30

 

 

 

 

 

 

 

 

 

 

 

 

Measurement

 

 

 

 

 

 

True trajectory

 

 

 

 

 

 

Filtered

 

 

 

 

 

 

Smoothed

25

 

 

 

 

 

 

20

 

 

 

 

 

 

15

 

 

 

 

 

 

10

 

 

 

 

 

 

5

 

 

 

 

 

 

0

 

 

 

 

 

 

−5

 

 

 

 

 

 

−10

 

 

 

 

 

 

−25

−20

−15

−10

−5

0

5

Figure 4.1: Tracking results of Kalman filter and smoother with model 1 in Tracking a Target with Simple Manouvers example.

The illustrate the performance differences between different models we have listed the MSE errors of position estimates for each model in the table 4.1. From these it can be seen that the estimates of Kalman filter with model 1 are clearly much worse than with model 2 or with the IMM filter. On the otherhand, the difference between the KF with model 2 and the IMM filter is smaller, but still significant in the favor of IMM. This is most likely due to fact that model 2 is more flexible than model 1, so model 2 is better in the regions of model 1 than model 1 in the regions of model 2. The bad performance of the model 1 can be seen especially during the manouvers. The IMM filter combines the properties of both models in a suitable way, so it gives the best overall performance. The effect of smoothing to tracking accuracy is similar with all models.

4.2Nonlinear Systems

The non-linear versions of IMM filter and smoother reviewed in previous section can be obtained simply by replacing the Kalman filter prediction and update steps (in eqs. (4.7), (4.7), (4.23) and (4.27)) by their extended Kalmam filter or unscented Kalman filter counterparts, which were reviewed in sections 2.2.2 and 2.2.6. These algorithms are commonly referred as IMM-EKF and IMM-UKF. Naturally this approach introduces some error to estimates of already suboptimal IMM, but can

75

CHAPTER 4. MULTIPLE MODEL SYSTEMS

Estimates produced by Kalman filter using the model 2.

30

 

 

 

 

 

 

 

 

 

 

 

 

Measurement

 

 

 

 

 

 

True trajectory

 

 

 

 

 

 

Filtered

 

 

 

 

 

 

Smoothed

25

 

 

 

 

 

 

20

 

 

 

 

 

 

15

 

 

 

 

 

 

10

 

 

 

 

 

 

5

 

 

 

 

 

 

0

 

 

 

 

 

 

−5

 

 

 

 

 

 

−10

 

 

 

 

 

 

−25

−20

−15

−10

−5

0

5

Figure 4.2: Tracking results of Kalman filter and smoother with model 2 in Tracking a Target with Simple Manouvers example.

Method

MSE

KF1

0.1554

KS1

0.0314

KF2

0.0317

KS2

0.0071

IMM

0.0229

IMMS

0.0057

Table 4.1: Average MSEs of estimating the position in Tracking a Target with Simple Manouvers example over 1000 Monte Carlo runs.

76

CHAPTER 4. MULTIPLE MODEL SYSTEMS

Estimates produced by IMM−filter.

30

 

 

 

 

 

 

 

 

 

 

 

 

Measurement

 

 

 

 

 

 

True trajectory

 

 

 

 

 

 

Filtered

 

 

 

 

 

 

Smoothed

25

 

 

 

 

 

 

20

 

 

 

 

 

 

15

 

 

 

 

 

 

10

 

 

 

 

 

 

5

 

 

 

 

 

 

0

 

 

 

 

 

 

−5

 

 

 

 

 

 

−10

 

 

 

 

 

 

−25

−20

−15

−10

−5

0

5

Figure 4.3: Tracking results of IMM filter and smoother in Tracking a Target with Simple Manouvers example.

77

CHAPTER 4. MULTIPLE MODEL SYSTEMS

Probability of model 1

 

 

 

 

 

 

 

 

 

 

True

 

 

 

 

 

 

 

 

 

 

Filtered

1

 

 

 

 

 

 

 

 

 

Smoothed

 

 

 

 

 

 

 

 

 

 

0.8

 

 

 

 

 

 

 

 

 

 

0.6

 

 

 

 

 

 

 

 

 

 

0.4

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

0

20

40

60

80

100

120

140

160

180

200

Figure 4.4: Filtered and smoothed probability of model 1 in each time step in Tracking a Target with Simple Manouvers example.

78

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]