
- •Введение
- •1. Научно-исследовательская часть.
- •1.1. Технические требования
- •1.2. Выбор метода регистрации магнитограмм
- •1.2.1. Метод Биттера
- •1.2.2. Магнитная силовая микроскопия
- •1.2.3. Магнитооптические методы
- •1.2.3.1 Магнитооптический эффект Керра
- •1.2.3.2. Магнитооптический эффект Фарадея.
- •1.2.4. Сравнение выбранного магнитооптического метода с другими методами визуализации.
- •1.3. Математическое описание оэурм
- •1.3.1 Поляризатор.
- •1.3.2 Магнитооптический кристалл
- •1.3.3 Анализатор.
- •Материалы для магнитооптических устройств и их основные характеристики
- •1.4.1 Феррит-гранаты
- •1.4.1.1 Кристаллическая структура и параметры решетки.
- •1.4.1.2 Оптическое поглощение.
- •1.4.1.3 Фарадеевское вращение.
- •1.4.1.4 Магнитооптическая добротность.
- •1.4.1.5 Намагниченность насыщения.
- •1.4.1.6 Магнитная анизотропия.
- •1.4.2 Ортоферриты.
- •1.4.3 Металлические аморфные пленки
- •1.4.3.1 Природа магнитного упорядочения и структура.
- •1.4.3.2 Одноосная анизотропия.
- •1.4.3.3 Магнитооптические свойства.
- •2. Конструкторская часть.
- •2.1 Выбор и обоснование конструкции оптико-электронного устройства регистрации магнитограмм
- •2.2 Крепление оптических элементов.
- •2.3 Крепление светодиода.
- •2.4 Крепление фпзс-матрицы.
- •2.5 Крепление магнитооптического кристалла и постоянного магнита.
- •2.6 Сборка осветительной ветви.
- •2.7 Сборка измерительной ветви.
- •2.9 Установка в общий корпус.
- •4. Технологическая часть
- •4.1 Требования к монокристаллической пленке феррит-граната
- •4.2 Изготовление магнитооптического кристалла.
- •2. Ориентация кристалла
- •4.4 Ориентация кристалла
- •4.5 Механообработка подложки
- •4.5.1 Резка подложки на заготовки
- •4.5.2 Шлифование подложки
- •4.5.3 Полирование подложки
- •4.6 Эпитаксиальное выращивание Bi-содержащих мпфг
- •4.7 Нанесение покрытий
- •4.7.1 Нанесение зеркального покрытия термическим испарением в вакууме
- •Установка вакуумная модели ву-1а
- •4.7.2 Нанесение просветляющего покрытия
- •4.8 Разрезание на заготовки 10x10 мм
- •4.8.1 Лазерное скрайбирование
- •4.8.2 Разламывание пластин на кристаллы
- •4.9 Контроль магнитооптических параметров
- •Анализ технологичности изготовления магнитооптического кристалла.
- •4.11 Вывод.
- •5.2 Определение стоимости проектно-конструкторских работ
- •Расчёт простого срока окупаемости инвестиций
- •Расчёт дисконтированного срока окупаемости инвестиций
- •Охрана труда и экология
- •6.1. Анализ вредных и опасных факторов при производстве магнитооптического кристалла
- •6.2 Микроклимат
- •6.4 Освещение
- •6.5 Требования пожарной безопасности
- •6.6 Рентгеновское излучение.
- •6.7 Защита от травмирования
- •6.8 Вентиляция
- •6.9 Химические факторы
- •6.10 Утилизация производственного брака
- •Заключение.
- •Список литературы
- •Приложение 1. Паспорт на фпзс-матрицу.
- •Приложение 2.
2.9 Установка в общий корпус.
В корпус (рис. 2.18) устанавливается крышка с магнитооптическим кристаллом и постоянным магнитом 3 винтами 5. Осветительная ветвь 1 устанавливается в корпус и прикручивается винтами 6. Измерительная ветвь 2 крепится в корпус винтами 4.
Рис. 2.18. ОЭУРМ в сборе.
3. Оптическая часть 3.1 Выбор и обоснование оптической схемы На основе вышеприведенного анализа, предложена оптическая схема устройства визуализации магнитограмм, которая должна содержать источник излучения, который должен осветить исследуемую область, коллиматор, собирающий лучи от источника света и направляющий их на исследуемый объект, рассеиватель, поляризатор для создания линейно поляризованного света, магнитооптическую головку, анализатор – для преобразования модуляции по плоскости поляризации в модуляцию света по интенсивности, оптический элемент для фокусировки изображения в плоскости ФПЗС-матрицы.
Рис. 3.1. Оптическая схема устройства визуализации магнитограмм
Магнитооптическая головка, как следует из проведенного выше анализа, должна содержать некую промежуточную среду, с которой дальше идет процесс считывания информации на основе эффекта Фарадея. Этой средой являются магнитные пленки феррит-гранатов, обладающих большим фарадеевским вращением. Способ магнитооптического считывания с помощью промежуточной среды целесообразно применять в том случае, когда оптические характеристики носителя информации не позволяют проводить считывание непосредственно с самого носителя (например, когда считывание информации с помощью эффекта Керра не обеспечивает требуемого отношения сигнал/шум). Принцип работы устройства. Излучение от светодиода 1, проходит через коллиматорную линзу 2, рассеиватель 3, поляризатор 4 и становится линейно поляризованным. Линейно поляризованное излучение направляется на носитель записи 6 со скрытой магнитной информацией. Важным элементом при визуализации информации является магнитная пленка феррит-граната 5, которая вращает плоскость поляризации выходного излучения на основе магнитооптического эффекта Фарадея. Магнитные поля рассеяния, создаваемые доменной структурой носителя информации 6, перестраивают доменную структуру пленки феррит-граната 5 с одноосной магнитной анизотропией. Поэтому линейно поляризованный свет, проходя через магнитную пленку феррит-граната, поворачивает свою плоскость поляризации в зависимости от того, через какой домен пленки 5 проходит излучение, на угол:
где
После отражения от зеркальнозащитного слоя магнитной пленки феррит-граната, необходимого для увеличения коэффициента отражения и предохраняющий от химического взаимодействия поверхностей носителя и пленки, излучение снова проходит через пленку, и плоскость его поляризации опять поворачивается на тот же угол и в ту же сторону, что и при первом прохождении. Таким образом, двойное прохождение излучения через магнитную пленку феррит-граната удваивает угол поворота плоскости поляризации излучения, увеличивая тем самым чувствительность к магнитному полю. Отраженное излучение проходит через анализатор 7, преобразующий модуляцию излучения по плоскости поляризации в модуляцию излучения по интенсивности. Изображение с магнитной пленки феррит-граната объективом 8 проецируется на ФПЗС 9 и далее информация передается для обработки в компьютер, в котором по соответствующему алгоритму производится сравнение изображений или информации с эталоном. Расстояния, приведенные на оптической схеме: между светодиодом 1 и коллиматором 2, между конденсором и рассеивателем 3, между рассеивателем и поляризатором 3, между поляризатором, плоскостью предмета и анализатором 6 выбираются из конструктивных соображений так, чтобы обеспечить минимальные габариты и удобство сборки и обслуживания устройства. Угол падения излучения на магнитную пленку феррит-граната примем равным 45°. Сформулируем основные требования и осуществим выбор элементной базы устройства регистрации магнитных полей рассеяния.
Источник излучения. Высококачественные пленки феррит-гранатов используются в видимом и ближнем инфракрасном спектре. Требований к монохроматичности излучения в данном случае нет. В связи с этим в качестве источника излучения выбран светодиод КИПД 21 К-Ж. При освещении светодиодом необходимо ставить коллиматорную линзу для обеспечения параллельного пучка определенного диаметра. Для исключения эффекта засветки применяется рассеиватель (матовое стекло).
Рис.3.2. Светодиод КИПД 21 К-Ж
Светодиод имеет характеристики, представленные в таблице 1. Таблица 3.1. Характеристики светодиода КИПД 21 К-Ж
| ||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||
Проекционный объектив. Требуется объектив, обеспечивающий высокий контраст. Исходя из этого, выберем из набора двухлинзовых компонентов, обеспечивающих в спектральном диапазоне от 0,55 до 0,9 мкм высокие значения коэффициентов передачи контраста при относительных отверстиях вплоть до 1:3—1:2,5 [20]. Выбранный объектив имеет следующие конструктивные параметры:
Смоделируем полученный объектив в пакете программ оптического моделирования «Zemax» и оценим возможность правильной работы в заданных условиях.
Рис.3.5. Схема выбранного объектива Построим графики аберраций смоделированного объектива и проведем оценку его работоспособности:
а)
б) Рис.3.6. а) – поперечные аберрации осевого и наклонных пучков; б) – волновые аберрации Оценим разрешающую способность данного объектива в плоскости ФПЗС-матрицы:
Рис.3.7. Модуляционная передаточная функция Как видим, данная система обладает незначительные аберрациями, однако разрешающая способность ниже требуемой (контраст 0,27 на 100 линий/мм). С целью повышения данного параметра проведем оптимизацию объектива. После оптимизации объектив будет иметь следующие конструктивные параметры:
Рис.3.8. Конструктивные параметры оптимизированного объектива
Построим графики аберраций оптимизированного объектива
а)
б) Рис.3.9. а) – поперечные аберрации осевого и наклонных пучков; б) – волновые аберрации Оценим разрешающую способность:
Рис.3.10. Модуляционная передаточная функция оптимизированного объектива Как видно из рис. 3.10, полученный объектив обеспечивает контраст 0,55 при разрешении 100 линий/мм, что является хорошим показателем для работы системы.
3.2 Светоэнергетический расчет На данном этапе определим освещенность, создаваемую оптической системой в плоскости приемника излучения и сделаем вывод о правильности выбора данного источника и приемника излучения. Для начала рассчитаем коэффициент пропускания оптических элементов оптико-электронного устройства регистрации магнитных полей рассеяния (рис. 3.1). Отражение на преломляющих поверхностях можно учесть, воспользовавшись формулами Френеля:
Для границ раздела оптических сред в магнитооптическом устройстве коэффициенты пропускания будут равны:
стекло К8-воздух
стекло
ОК1-воздух
стекло
БФ16-воздух
Коэффициент
пропускания магнитной пленки
феррит-граната с учетом просветления
подложки и нанесения зеркального
покрытия Коэффициенты пропускания поляризатора и анализатора:
Потери
в толще оптических материалов. Суммируя
все толщины, получаем
l
= 0,034 м. Тогда
Суммарный коэффициент пропускания находится перемножением вычисленных составляющих:
Из паспортных данных источника света известна его сила света
Определим потом излучения от источника на коллиматорную линзу:
Где Ω – телесный угол, определяется как
Рис.3.11. Определение телесного угла
Тогда поток
С учетом потерь на оптических элементах можно считать, что поток излучения, падающего на приемник излучения, составит
где
Площадь рабочей области приемника излучения составляет
а=10,2 мм, b=8.3 мм – размер активной области матрицы ФПЗС. Тогда освещенность, создаваемая на матрице ФПЗС, составит
По паспортным данным, минимальный порог освещенности для данного приемника излучения составляет 0,01 лк, поэтому выбранная элементная база обеспечивает работоспособность устройства регистрации магнитных полей рассеяния.
|