Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

3501

.pdf
Скачиваний:
4
Добавлен:
15.11.2022
Размер:
6.07 Mб
Скачать

максимальную пропускную способность 528 Мбайт/с. Конструктивно исполняется либо в виде 28-контактной микросхемы, либо в виде модуля расширения на 256 или 512 Кбайт.

6.1.2. Размещение информации в основной памяти IBM PC

Адресуемой единицей информации основной памяти IBM PC является байт. Это означает, что каждый байт, записанный в ОП, имеет уникальный номер (адрес). При использовании 20-битной шины адреса абсолютный (физический) адрес каждого байта является пятиразрядным шестнадцатеричным числом, принимающим значения от 00000 до FFFFF. В младших адресах располагаются блоки операционной системы (векторы прерываний, зарезервированная область памяти BIOS), в этой же части могут размещаться драйверы устройств, дополнительные обработчики прерываний DOS и BIOS, командный процессор операционной системы. Затем располагается область памяти, отведенная пользователю. Область памяти пользователя заканчивается адресом 9FFFF. Этот адрес является физической границей оперативного ЗУ, последним адресом 640-Кбайтной основной памяти. Остальное адресное пространство (128 Кбайт с адреса АОООО по BFFFF) отведено под видеопамять, которая физически размещается не в ОП, а в адаптере дисплея. После видеопамяти расположено адресное пространство (256Кбайт) постоянного запоминающего устройства (ПЗУ), хранящего программы базовой системы ввода-вывода (BIOS - ―Basic Input — Output System‖). Эта часть ОП еще называется ROM-BIOS. Из отведенных 256 Кбайт непосредственно ПЗУ занимает 64 Кбайта, а остальные 192 Кбайт оставлены для расширения ПЗУ. Поскольку большая часть оставленной для расширения BIOS части адресного пространства не используется, в этих адресах часто располагается информация, необходимая для работы сетевых карт, графических расширителей и др.

Запись в ОП (и чтение из нее) может осуществляться не только байтами, но и машинными словами. При этом машинное слово при размещении в памяти занимает несколько смежных байтов. Каждый байт ОП имеет свой адрес. Но машинное слово характеризуется не всеми адресами занятых байтов, а только одним - адресом младшего байта слова. Обычно графически машинное слово изображается так, что младший байт находится

Рис.71. Стереотипное представление машинного слова При записи слова младший байт размещается по адресу, который является

адресом машинного слова, старший байт машинного слова размещается в

160

следующем по порядку байте ОП, имеющем номер, увеличенный на 1 (здесь действует мнемоническое правило ―младший байт - по младшему адресу‖).

Рис. 72. ―Вращение‖ байтов при чтении машинного слова из ОП При чтении из ОП двух следующих подряд байтов машинного слова их

принято размещать слева направо: сначала первый из прочитанных байтов (с меньшим адресом), а затем - следующий. В результате происходит ―вращение‖ байтов (рис.72), которое психологически трудно воспринимается. Необходимо помнить, что при записи отдельных байтов каждый байт располагается в ОП по своему адресу, при чтении никакого вращения не происходит. При записи же в ОП единиц информации, имеющих в своем составе больше одного байта, адресом информационной единицы является адрес самого младшего байта, запись в ОП ведется побайтно, начиная с самого младшего байта, каждый последующий байт располагается в ячейке, адрес которой на 1 больше предыдущего. Иными словами, запись машинного или двойного слова производится справа налево, тогда как при чтении считанные байты обычно располагаются слева направо - происходят ―вращение‖ байтов, перестановка их местами, что необходимо учитывать при работе с ОП на физическом уровне.

6.1.3. Расширение основной памяти IBM PC

Рабочая концепция фирмы IBM при создании IBM PC содержала гипотезу, что объем основной памяти ЭВМ, предназначенной для персонального использования в любой предметной области, не должен превышать 640 Кбайт. Поэтому в базовую модель IBM PC заложили 20-разрядную шину адреса системной магистрали. Наличие 20 линий в шине адреса позволяло адресовать память большего объема, чем было предусмотрено концепцией (220 = 1 Мбайт). ―Излишек‖ адресного пространства в 384 Кбайт был поделен между видеопамятью (128 Кбайт) и ПЗУ (256 Кбайт).

Физически увеличить объем памяти несложно, для этого необходимо только подключить к системной магистрали дополнительные модули. Такая возможность в IBM PC была предусмотрена. Но каждый байт дополнительной памяти должен иметь уникальный адрес, а адресного пространства для дополнительной памяти нет.

Существует несколько способов разрешения таких конфликтов. Один из них - банкирование памяти: вся память делится на блоки (банки), емкость которых не выходит за пределы допустимого адресного пространства; во время работы специальными командами можно переключать банки, делая активным любой из них или осуществляя групповую перепись информации из одного банка в другой.

161

ВЮМ PC XT фирма IВМ применила другой способ: 256 Кбайт было сначала оставлено для ПЗУ, в котором размещалась базовая система ввода-вывода (BIOS). Анализ программ BIOS показал, что в оставленном для ПЗУ адресном пространстве (UMB - Upper Memory Block) имеются ―окна‖ - неиспользуемые участки. Четыре таких участка (paqe frames) по 16 Кбайт были выделены, и их адреса стали использоваться для адресации дополнительной памяти, подключенной к системной магистрали. Таким образом общий объем ОП удалось увеличить на 64 Кбайта. Специальная программа (драйвер дополнительной памяти) ―перехватывала‖ обращение к ―окнам‖ ПЗУ и вместо них ―подставляла‖ дополнительный модуль памяти

(Expended Memory).

Дополнительная память не обязательно должна была иметь объем 64 Кбайта. Ее объем мог быть и большим (фирма IBM выпускала модули дополнительной памяти объемом 8 и 32 Мбайта). При этом драйвер дополнительной памяти делил ее на блоки по 16 Кбайт и ―отображал‖ каждое окно UMB на один из блоков Expended Memory. Из-за этого память такого вида получила название отоброжаемой.

Но развитие персональных ЭВМ привело к необходимости более серьезной корректировки рабочей концепции. Поэтому в IBM AT с микропроцессором i80286 разрядность шины адреса увеличили до 24, что позволило увеличить ее объем до 16 Мбайт. В МП i80386 разрядность шины адреса и адресных регистров микропроцессора увеличена до 32, в результате чего допустимый объем ОП увеличился до 4 Гбайт.

Наряду с этим изменился принцип формирования абсолютного адреса ОП, в результате чего утрачена совместимость с программным обеспечением, разработанным для IBM PC XT.

Чтобы обеспечить совместимость AT с XT, было решено реализовать два режима работы микропроцессоров, имеющих номер, больший 80286: реальный и защищенный.

Вреальном режиме дополнительные разряды шины адреса заблокированы, что обеспечивает совместимость с микропроцессором 18086 и позволяет использовать операционную систему MS DOS и программное обеспечение, разработанное для XT. Но при этом остается неиспользованной вся дополнительная память, находящаяся за пределами 1 Мбайта. В защищенном режиме применяется другой принцип формирования абсолютного адреса ОП, благодаря чему возможно использование всей имеющейся в наличии дополнительной (расширенной) памяти, но возникают трудности с использованием программного обеспечения, разработанным для

MS DOS.

ВIBM PC XT 20-битный адрес формировался из двух машинных слов: базового адреса сегмента (16 бит) и смещения (16 бит). Это было связано с тем, что вся ОП делилась на сегменты емкостью 64 Кбайта. Адресация байтов внутри сегмента начиналась с 0 и заканчивалась адресом FFFF.

162

Внутрисегментный адрес байта называется смещением (т.е. смещением относительно начала сегмента). Начало же сегмента (т.е. его базовый 20битный адрес) однозначно определялось 16-битовым адресом, который преобразовывался в 20-битный адрес дописыванием справа четырех нулей. В машинных командах абсолютный (физический) адрес задавался либо прямым указанием базового адреса сегмента и смещения (которые разделялись двоеточием, например, OA12:F4B2, где ОА12 - 20-битовый адрес начала сегмента; F4B2 -16-битное смещение внутри сегмента), либо по умолчанию (базовые адреса сегментов программы, данных, стека запоминаются в специальных регистрах микропроцессора), либо указанием регистра, в котором содержится необходимый базовый адрес (например, если регистр называется CS, то абсолютный адрес в машинной команде может быть задан в виде: CS:F4B2).

Начиная с МП i80386, благодаря увеличению длины всех регистров для смещений до 32 бит, реализована возможность работы ―с плоской памятью‖, не разделяемой на сегменты. Это допускает адресацию 232 байта или 4 Гбайга ОП.

Кроме того, в защищенном режиме (начиная с МП i80286) можно использовать и сегментированную память, но сегментные регистры не суммируются со смещением, а предназначены в качестве указателя на управляющие таблицы, содержащие необходимую информацию о сегментах. Поскольку длина записей в этих таблицах может превышать 16 бит, появляется возможность увеличить количество и размеры сегментов, а следовательно, и максимальный объем виртуальной памяти (так как 32битовая шина адреса СМ ограничивает допустимый объем физической памяти, виртуальная память реализуется за счет замены страниц в физической ОП слотами, т.е. образами страниц, из внешнего ЗУ).

Желание использовать в реальном режиме всю фактически имеющуюся в наличии дополнительную память привело к созданию двух виртуальных режимов, один из которых стандарт EMS (Expended Memory Specifications),

реализующий принцип банкирования дополнительной памяти. Вся дополнительная память делится на страницы (банки) емкостью по 16 Кбайт; выбираются четыре страницы и объявляются активными. Выбранные активные страницы отображаются на четыре окна UMB, теперь при обращении к одному из окон UMB вместо него подставляется отображенная на него страница дополнительной памяти. Поскольку любое окно UMB можно отобразить на любую страницу дополнительной памяти (объявив ее активной), то, изменяя отображение в процессе работы, можно использовать всю дополнительную память любого объема.

Стандарт EMS реализуется программным путем - с помощью драйвера дополнительной памяти, который ―перехватывает‖ каждое обращение к окну, имеющемуся в адресном пространстве ПЗУ, и ―подставляет‖ вместо ПЗУ соответствующий участок дополнительной памяти.

163

В соответствии с этим стандартом работают драйверы XMA2EMS.SYS, EMM386.SYS и дp.

Стандарт EMS несколько снижает производительность системы, но не накладывает никаких ограничений на размещение в дополнительной памяти программ и данных.

Другой виртуальный режим основан на том, что за счет разблокирования на время дополнительных (по сравнению с XT) линий шины адреса системной магистрали удается увеличить доступное MS DOS адресное пространство еще почти на 64 Кбайта, начиная с'адреса FFFFF (т.е. за пределами адресного пространства 1 Мбайт). Эта область адресного пространства (64 Мбайта, начиная с 1 Мбайта) получила название НМА (Hiqh Memory Area) - пая область памяти. Ее также можно использовать, работая в MS DOS, хранения и программ, и данных.

Блоки памяти, расположенные выше границы НМА, называются ЕМВ Extended Memory Blocks) - расширенные блоки памяти, хотя часто расширенной памятью (ЕМ - Extended Memory) называют всю дополнительную память, расположенную в адресном пространстве выше 1 Мбайта, иногда !ляя в ней область НМА.

Кратковременное разблокирование дополнительных линий шины адреса емной магистрали позволяет реализовать стандарт XMS (eXtended Memory ification), при котором разделенная на страницы ЕМ отображается на , но в этом стандарте программные модули могут располагаться только ИА, а остальная память может использоваться лишь для хранения данных. Стандарт XMS реализуется драйвером HIMEM.SYS, который способен гать с шиной адреса, имеющей до 32 линий.

6.2 Центральный процессор ЭВМ

6.2.1. Структура базового микропроцессора

Основу центрального процессора ПЭВМ составляет микропроцессор - обрабатывающее устройство, служащее для арифметических и логических преобразований данных, для организации обращения к ОП и ВнУ и для управления ходом вычислительного процесса. В настоящее время существует большое число разновидностей микропроцессоров, различающихся назначении, функциональными возможностями, структурой, исполнением. Чаще всего наиболее существенным, классификационным различием между ними является количество разрядов в обрабатываемой информационной единице:8-битовые, 16-битовые, 32-битовые и др.

К группе 8-битовых микропроцессоров относятся i8080, i8085 (с буквы i начинаются названия МП, выпускаемых фирмой Intel - INTegrated Electronics), Z80 (с буквы Z начинаются названия МП фирмы Zilog) и др. Наиболыпее распространение среди 16-битовых микропроцессоров поли i8086, i8088, 32-битовых - i80386, i80486, которые совместимы по идам и форматам данных снизу вверх. Эти микропроцессоры используются в

164

различных модификациях ЮМ PC. Два из этих микропроцессоров: i8086 и i8088 по назначению и функционым возможностям одинаковы. Различаются они только разрядностью шины данных системной магистрали: МП i8086 имеет 16-битовую шину даных, а i8088 - 8-битовую. В связи с этим выборка команд и операндов из оперативной памяти производится за разное число машинных циклов. С точки зрения функциональных возможностей существенного значения эти различия не имеют, поэтому и упоминают о них, как правило, вместе: 8086/8088. Этот тип МП является базовым для IBM совместимых машин. Все последующие типы МП основываются на нем и лишь развивают его архитектуру.

МП 8086/8088 имеет базовую систему команд. В следующей модификации МП фирмы Intel - 80186 реализована расширенная система команд. Расширение системы команд продолжается во всех новых моделях, но кроме этого в каждой новой модели вводятся дополнительные архитектурные решения: в 80286 введены встроенный блок управления ОП, работающий в виртуальном режиме (что позволило увеличить предельно допустимый объем виртуальной памяти до 4 Гбайт при 16 Мбайт физической), и блоки, позволяющие реализовать мультизадачность: блок защиты ОП и блок проверки уровня привилегий, присваиваемых каждой задаче. Кроме того, во всех последующих моделях вводятся и совершенствуются средства, позволяющие повысить производительность МП: совершенствуются конвейер команд и встроенный блок управления ОП, вводятся микропрограммное управление операциями, прогнозирование переходов по командам условной передачи управления, скалярная архитектура ЦП (арифметический конвейер) и мультискалярная архитектура (несколько параллельно работающих арифметических конвейеров, одновременно выполняющих несколько машинных операций, благодаря чему появляется возможность за один такт МП выполнять более одной машинной операции). Начиная с 80486, в кристалле МП размещается арифметический сопроцессор для операций с плавающей точкой. Фирма Intel разработала специальный микропроцессор Over Drive, который предназначен для параллельной работы с основным микропроцессором (для этого на системной плате предусматривается специальное гнездо).

Все эти усовершенствования позволяют сделать персональную ЭВМ IBM PC мультипрограммной, многопользовательской (МП 80286 позволял работать с 10 терминалами; 80386 - с 60) и многозадачной. С помощью операционной системы стало возможным реализовать работу в режиме SVM (системы виртуальных машин), т.е. на одной ПЭВМ реализовать множество независимых виртуальных машин (МП 803 86 позволял в этом режиме реализовать работу до 60 пользователей, каждому из которых предоставлялась отдельная виртуальная ПЭВМ IBM PC на МП 8086).

165

Некоторые характеристики МП фирмы intel приведены в табл 20. В обозначениях микропроцессоров появились дополнительные элементы: буквы SL, SX, DX и цифры. Буквы обозначают:

SL - микропроцессор изготовлен для работы с пониженным потреблением энергии (питание на те или иные блоки МП подается только в те моменты, когда они включаются в работу, в результате снижается потребление энергии и увеличивается срок службы источников питания, сокращается выделение энергии в кристалле МП и снижается его температура, благодаря чему увеличивается срок службы микропроцессора);

SX - данный микропроцессор является переходным - длина машинного слова в нем осталась без изменения от предыдущей модели;

DX - длина машинного слова увеличена вдвое по сравнению с МП предыдущей модели.

Цифры обозначают, во сколько раз изменилась тактовая частота по сравнению с МП предыдущей модели. Иногда (при наличии модификаций) дополнительно указывается тактовая частота МП.

Разработан новый микропроцессор - Реntiun ММХ (MultiMedia Extention), в котором реализована архитектура вычислительных систем класса SIMD, введено 57 новых команд, необходимых для обработки аудио-, видео- и телекоммуникационной информации.

Таблица 20

Характеристики микропроцессоров фирмы Intel

Наименова

Тактовая

Ин

Разрядн

Адресуемая

Сопр

Сниже

Примеча

ние МП

частота,

дек

ость ШД

память/

оцесс

ние

ние

 

Мгц

с

(внутрен

разрядность

ор

потреб

 

 

 

iC

няя/

ША

 

ления

 

 

 

OM

внешняя

 

 

 

энерги

 

 

 

P

)

 

 

 

и

 

8086

 

 

16/16

1

Мб/20

 

 

40000

 

 

 

 

 

 

 

 

транз

8088

 

 

16/8

l Мб/20

 

 

 

80286

 

 

16/16

16 Мб/24

 

 

130000

 

 

 

 

 

 

 

 

трата

80386SL

 

 

16/16

16 Мб/24

 

Есть

 

80386SX

 

 

32/32

16 Мб/24

 

 

 

80386DX

 

 

32/32

4

Г6/32

 

 

 

80486SL

 

 

32/32 .

4

Г6/32

Нет

Есть

 

80486SX

25

100

32/32

4

Г6/32

Нет

 

 

80486SX2

40

-

32/32

4

Г6/32

 

 

 

80486SX2

50

180

32/32

4

Г6/32

 

 

 

80486DX

 

 

32/32

4

Г6/32

Встр.

 

 

80486DX2

50

231

32/32

4

Г6/32

Встр.

 

1,2 млн

166

 

 

 

 

 

 

 

транз.

80486DX2

66

297

32/32

4 Г6/32

Встр.

 

 

80486DX4

75

319

32/32

4 Г6/32

Встр.

 

 

80486DX4

100

435

32/32

4 Г6/32

Встр.

 

 

Over Drive

 

 

32/32

4 Г6/32

Встр.

 

Аналог

 

 

 

 

 

 

 

486DX2

Pentium

60

510

64,32/64

4 Г6/32

Встр.

 

6,7 млн

 

 

 

 

 

 

 

транз.

Pentium

66

567

64,32/64

4 Г6/32

Встр.

 

 

Pentium

90

735

64,32/64

4 Г6/32

Встр.

 

 

Pentium

100

815

64,32/64

4 Г6/32

Встр.

 

 

Pentium

133

-

64,32/64

4 Г6/32

Встр.

 

 

Pentium

166

 

64,32/64

4 Г6/32

Встр.

 

 

Pentium

о 150

 

 

 

 

 

 

Pro

 

 

 

 

 

 

 

Pentium

о 200

 

 

 

 

 

 

Pro

 

 

 

 

 

 

 

В персональных ЭВМ нашли применение не только микропроцессоры фирмы Intel. Крупнейшими производителями аналогов микропроцессорам Intel (клонов) являются фирмы Cyrix и AMD.

Фирма Cyrix выпускает микропроцессоры М-1 и М-2, аналогичные Pentium, но превосходящие его по производительности. Так, М-1 с тактовой частотой 150 МГц по производительности эквивалентен МП Pentium с тактовой частотой 200 МГц.

Фирма AMD, завоевавшая около 30% рынка МП в России, выпускает микропроцессоры К-5 и К-6, являющиеся соответственно аналогами Pentium

и Pentium Pro.

Структурная схема базовой модели МП фирмы Intel приведена на рис.73.

167

Рис.73. Структурная схема микропроцессора Условно микропроцессор можно разделить на две части: исполнительный

блок (Execution Unit - EU) и устройство сопряжения с системной магистралью (Bus Interface Unit - ВШ).

В исполнительном блоке находятся: арифметический блок и регистры общего назначения (РОН). Арифметический блок включает арифметикологическое устройство, вспомогательные регистры для хранения операндов и регистр флагов.

168

Восемь регистров исполнительного блока МП (АХ, ВХ, СХ, DX, SP, ВР, SI, DI), имеющих длину, равную машинному слову, делятся на две группы. Первую группу составляют регистры общего назначения: АХ, ВХ, СХ и DX, каждый из которых представляет собой регистровую пару, составленную из двух регистров длиной в 0.5 машинного слова: аккумулятор, или регистр АХ состоит из регистров АН и AL. Регистр базы (Base Register) ВХ состоит из регистров ВН и BL. Счетчик (Count Register) СХ включает регистры СН и CL. Регистр данных (Data Register) DX содержит регистры DH и DL. Каждый из коротких регистров может использоваться самостоятельно или в составе регистровой пары. Условные названия (аккумулятор, регистр базы, счетчик, регистр данных) не ограничивают применения этих регистров - эти названия говорят о наиболее частом использовании их или об особенности использования того или иного регистра в той иди иной команде.

Вторую группу составляют адресные регистры SP, BP, SI и DI (в старших моделях количество адресных регистров увеличено). Эти регистры активно используются по функциональному назначению и в других целях их применятъ не рекомендуется. В качестве адресного регистра часто используется РОН ВХ. Программно допускается использование регистров BP, DI и SI в качестве регистров для хранения операндов, но отдельные байты в этих регистрах недоступны. Основное их назначение - хранить числовые значения, реализуемые при формировании адресов операндов.

Устройство сопряжения с системной магистралью содержит управляющие регистры, конвейер команд, АЛУ команд, устройство управления исполнительным блоком МП и интерфейс памяти (соединяющий внутреннюю магистраль МП с системной магистралью ПЭВМ).

Управляющие регистры BIU: CS (указатель командного сегмента), DS указатель сегмента данных), SS (указатель сегмента стека), ES (указатель дополнительного сегмента) и др. служат для определения физических адресов ОП - операндов и команд. Регистр IP (Instruction Pointer) является указателем адреса команды, которая будет выбираться в конвейер команд в качестве очередной команды (в отечественной литературе такое устройство называется счетчик команд). Конвейер команд МП хранит несколько команд, что позволяет при выполнении линейных программ совместить подготовку очередной команды с выполнением текущей.

К управляющим регистрам МП относится и регистр флагов, каждый разряд которого имеет строго определенное назначение. Обычно разряды регистра флагов устанавливаются аппаратно при выполнении очередной операции в зависимости от получаемого в АЛУ результата. При этом фиксируются такие свойства получаемого результата, как нулевой результат, отрицательное число, переполнение разрядной сетки АЛУ и т.д. Но некоторые разряды регистра флагов могут устанавливаться по специальным командам. Некоторые разряды имеют чисто служебное назначение

169

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]