- •Производная. Определение, непрерывность функции, имеющей производную.
- •Геометрический смысл производной.
- •Арифметические свойства производной.
- •Производная обратной функции.
- •Производная сложной функции.
- •Производные элементарных функций.
- •Билет 7 Дифференциал функции. Определение. Геометрический смысл.
- •Необходимое и достаточное условие дифференцируемости.
- •Теорема 1: Для того, чтобы функция была дифференцируемой в точке, необходимо и достаточно , чтобы она имела конечную производную в этой точке.
- •Производные высших порядков. Формула Лейбница.
- •Дифференциалы высших порядков. Инвариантность формы первого дифференциала. Неинвариантность формы дифференциалов второго и высших порядков.
- •Возрастание (убывание) функции в точке. Необходимое и достаточное условие. Теорема Ферма.
- •Теорема Ролля.
- •Теорема Коши. Физический смысл.
- •Теорема о среднем Лагранжа.
- •Достаточное условие невозрастания (неубывания) функции на отрезке. Условие постоянства функции на отрезке.
- •Достаточные условия экстремума.
- •Формула Тейлора для многочленов.
- •Формула Тейлора для дифференцируемых функций.
- •Формула Тейлора для важнейших элементарных функций.
- •Билет 20 Выпуклость функции в точке. Достаточное условие.
- •Теорема 1 (Достаточное условие существования точки перегиба).
- •Непрерывна в и. Тогда, если- нечетное число, то криваяобращена выпуклостью вверх или вниз в зависимости от того, будет лиили, а есличетное, тоесть точка перегиба кривой.
- •Выпуклость функции на отрезке. Необходимое и достаточное условие.
- •Правило Лопиталя. Случай 0/0.
- •1) A – конечное.
- •Правило Лопиталя. Случай .
- •Раскрытие неопределенностей вида ,,,,.
- •Асимптота. Уравнение наклонной асимптоты.
- •Первообрáзная. Неопределенный интеграл. Свойства.
- •Замена переменной в неопределенном интеграле.
- •Интегрирование по частям неопределенного интеграла.
- •Интегрирование простейших рациональных дробей
- •Интегрирование рациональных дробей.
- •Интегрирование выражений вида.
- •Первая подстановка Эйлера (Леонарда)
- •Интегрирование тригонометрических выражений.
- •Тригонометрические подстановки.
- •Определенный интеграл Римана. Эквивалентные определения. Условие Коши.
- •Ограниченность интегрируемой функции.
- •Суммы Дарбу. Их Свойства.
- •Суммы Дарбу и интегрируемость функции по Риману.
- •Билет 41 Основная теорема о существовании определенного интеграла Римана.
- •Равномерная непрерывность функции. Модуль непрерывности.
- •Теорема 2 Функция непрерывная на отрезке, равномерно непрерывна на нем ().
- •Интегрируемость по Риману непрерывной функции.
- •Интегрируемость по Риману монотонной функции.
- •Аддитивное и однородные свойства определенного интеграла Римана.
- •Неравенства для определенного интеграла Римана и теорема о среднем.
- •Интеграл как функция верхнего предела. Непрерывность и дифференцируемость. Теорема Ньютона-Лейбница.
- •Билет 48 Определение площади. Площадь криволинейной трапеции. Площадь в полярных координатах.
- •Определение объёма. Объем тела вращения.
- •Длина дуги кривой. Определение и вычисление.
Теорема Коши. Физический смысл.
Теорема: (Коши о среднем)
Пусть функции f(x) и g(x) непрерывны на отрезке [a,b] и имеют производные на интервале (a,b), одновременно не обращающиеся в ноль. При этом g(b)-g(a)0 (что следует из условия g΄(x)0). Тогда на интервале (a,b) найдется точка ζ, для которой выполняется неравенство:
, a<ζ<b.
Доказательство: Вводим функцию H(x)=(f(b)-f(a))·g(x)-(g(b)-g(a))·f(x). Очевидно, что она непрерывна на [a,b] и имеет производную на (a,b), т.к. f(b)-f(a) и g(b)-g(a) постоянны. Кроме того, H(a)=H(b), поэтому по теореме Ролля найдется такая точка ζ из (a,b), что H΄(ζ)=0.
H΄(ζ)=(f(b)-f(a))·g΄(ζ)-(g(b)-g(a))·f΄(ζ)(f(b)-f(a))·g΄(ζ)=(g(b)-g(a))·f΄(ζ), т.к. по условиюg(b)-g(a)0 и g΄(x)0 на (a,b).
Теорема доказана.
Физический смысл: Если f΄(x) и g΄(x) – скорости, то отношение перемещений равно отношению скоростей в какой-то момент времени.
Билет 14
Теорема о среднем Лагранжа.
Теорема:
Пусть функция непрерывна на отрезкеи имеет производную на интервале. Тогда существует на интервалеточка, для которой выполняется равенство
(1),
причем .
Доказательство:
В теореме Коши, возьмем . Тогда,,.
Из теоремы Коши: теорема доказана.
Физический смысл:
Найдется момент времени когда (средняя скорость равна мгновенной)
Геометрический смысл:
Теорема Лагранжа утверждает, что если кривая есть график непрерывной на функции, имеющей производную на, то на этой кривой существует точка, соответствующая некоторой абсциссетакая, что касательная к кривой в этой точке параллельна хорде, стягивающей концы кривойи.
Равенство (1) называется формулой (Лагранжа) конечных приращений. Промежуточное значение удобно записывать в виде, гдеесть некоторое число, удовлетворяющее неравенствам. Тогда формула Лагранжа примет вид
Она верна, очевидно, не только для , но и для.
Билет 15
Достаточное условие невозрастания (неубывания) функции на отрезке. Условие постоянства функции на отрезке.
Определение: Функция называется строго возрастающей на отрезке [a,b], если для любых точек ,из [a,b], удовлетворяющих неравенству , имеет место неравенство.
Определение: Функция называется неубывающей на [a,b], если из того, что иследует, что.
Определение: Функция называется строго убывающей на отрезке [a,b], если из того, что иследует, что.
Определение: Функция называется невозрастающей на [a,b], если из того, что иследует, что.
Пример:
Если убывает наи на, то нельзя говорить, чтоубывает на.
Теорема 1: (необходимое условие возрастания (неубывания) функции в точке )
Если функция возрастает (неубывает) в точкеи дифференцируема в, то.
Доказательство:
Теорема доказана.
Пример: возрастает в 0 и
Теорема 1’: (необходимое условие убывания (невозрастания) функции в точке )
Если функция убывает (невозрастает) в точкеи дифференцируема в, то.
Доказательство – аналогично теореме 1.
Теорема 2: (достаточное условие возрастания)
Если функция дифференцируема ви, товозрастает в точке.
Доказательство:
возрастает.
Теорема доказана.
Замечание: Если в точке , то ни про возрастание, ни про убывание ничего сказать нельзя.
Билет 16