
Уравнения Максвелла (55
..pdf1 F |
|
wFkl |
|
1 F |
§ |
wFml |
wFlk |
· |
|
|
1 F |
wFml |
|
|||||||||||||||||
|
¨ |
¸ |
|
|
|
|||||||||||||||||||||||||
|
|
|
|
|
|
|||||||||||||||||||||||||
2 |
lm |
wx |
|
2 |
|
ml |
|
wx |
|
|
|
wx |
|
|
2 |
ml |
|
|||||||||||||
|
|
|
|
|
|
|
|
© |
|
k |
|
|
¹ |
|
|
|
wx |
|
||||||||||||
|
|
|
|
m |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
m |
|
|
|
|
k |
|
||||
|
|
|
1 |
|
w |
|
(F |
|
|
F |
) |
|
|
|
1 G |
|
w |
(F |
F |
) . |
(10.3) |
|||||||||
|
|
|
|
|
|
|
|
|
wx |
|||||||||||||||||||||
|
|
|
|
4 wx |
|
|
|
ml |
ml |
|
|
|
4 |
kl |
|
|
mn |
mn |
|
|||||||||||
|
|
|
|
|
|
k |
|
|
|
|
|
|
|
|
|
|
|
|
|
l |
|
|
|
|
|
|
||||
ȼ ɪɟɡɭɥɶɬɚɬɟ ɩɨɥɭɱɚɟɦ: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
w |
T |
|
|
1 |
|
|
|
w |
§F |
|
|
F |
1 G |
kl |
F |
F |
·. |
(10.4) |
||||||||||
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
kl |
|
|
|
|
|
|
|
|
|
|
|
¨ |
km |
ml |
|
4 |
|
mn mn ¸ |
|
|||||||
|
|
wxl |
|
|
|
|
4S wxl © |
|
|
|
|
|
|
|
|
|
¹ |
|
||||||||||||
ɇɚ ɨɫɧɨɜɚɧɢɢ ɩɨɫɥɟɞɧɟɝɨ ɪɚɜɟɧɫɬɜɚ ɩɨɥɨɠɢɦ |
|
|||||||||||||||||||||||||||||
|
|
|
T |
|
|
1 |
|
§F |
|
F |
|
1 G |
F |
|
F |
·. |
|
(10.5) |
||||||||||||
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
kl |
|
|
|
|
|
¨ |
|
km |
ml |
|
4 |
|
kl mn |
mn ¸ |
|
|
||||||||||
|
|
|
|
|
|
|
|
|
4S© |
|
|
|
|
|
|
|
|
|
|
|
|
¹ |
|
|
ɉɨɥɭɱɟɧɧɵɣ ɧɚɦɢ ɬɟɧɡɨɪ ɷɧɟɪɝɢɢ-ɢɦɩɭɥɶɫɚ ɷɥɟɤɬɪɨɦɚɝɧɢɬ-
ɧɨɝɨ ɩɨɥɹ ɫɢɦɦɟɬɪɢɱɟɧ: |
|
|
Tkl |
Tlk . |
(10.6) |
ȿɝɨ ɫɥɟɞ (ɫɭɦɦɚ ɞɢɚɝɨɧɚɥɶɧɵɯ ɷɥɟɦɟɧɬɨɜ) ɪɚɜɟɧ ɧɭɥɸ: |
||
Tll |
0 . |
(10.7) |
ɂɧɬɟɪɩɪɟɬɚɰɢɹ ɤɨɦɩɨɧɟɧɬ |
Tkl ɨɫɧɨɜɵɜɚɟɬɫɹ ɧɚ |
ɪɚɜɟɧɫɬɜɟ |
(10.1) ɢ ɧɚ ɢɧɬɟɪɩɪɟɬɚɰɢɢ ɤɨɦɩɨɧɟɧɬ Tkl(m) . ȼɪɟɦɟɧɧɚɹ ɤɨɦɩɨ-
ɧɟɧɬɚ T44 ɢɧɬɟɪɩɪɟɬɢɪɭɟɬɫɹ ɤɚɤ ɜɡɹɬɚɹ ɫ ɨɛɪɚɬɧɵɦ ɡɧɚɤɨɦ ɩɥɨɬɧɨɫɬɶ ɷɧɟɪɝɢɢ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɝɨ ɩɨɥɹ; ɫɦɟɲɚɧɧɚɹ ɤɨɦɩɨɧɟɧɬɚ TD4 – ɤɚɤ D-ɹ ɩɪɨɟɤɰɢɹ ɩɥɨɬɧɨɫɬɢ ɩɨɬɨɤɚ ɷɧɟɪɝɢɢ ɩɨɥɹ,
ɭɦɧɨɠɟɧɧɚɹ ɧɚ ic , ɢɥɢ ɠɟ ɤɚɤ D-ɹ ɩɪɨɟɤɰɢɹ ɩɥɨɬɧɨɫɬɢ ɢɦ-
ɩɭɥɶɫɚ, ɭɦɧɨɠɟɧɧɚɹ ɧɚ ic ; ɩɪɨɫɬɪɚɧɫɬɜɟɧɧɚɹ ɤɨɦɩɨɧɟɧɬɚ TDE –
ɤɚɤ E-ɹ ɩɪɨɟɤɰɢɹ ɩɥɨɬɧɨɫɬɢ ɩɨɬɨɤɚ D-ɣ ɩɪɨɟɤɰɢɢ ɢɦɩɭɥɶɫɚ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɝɨ ɩɨɥɹ.
11. ɗɥɟɤɬɪɢɱɟɫɤɨɟ ɢ ɦɚɝɧɢɬɧɨɟ ɩɨɥɹ
Ⱥɩɩɚɪɚɬ 4-ɬɟɧɡɨɪɨɜ ɨɫɨɛɟɧɧɨ ɭɞɨɛɟɧ ɢ ɷɮɮɟɤɬɢɜɟɧ ɩɪɢ ɨɛɫɭɠɞɟɧɢɢ ɨɛɳɢɯ ɜɨɩɪɨɫɨɜ ɷɥɟɤɬɪɨɞɢɧɚɦɢɤɢ. ɉɪɢ ɚɧɚɥɢɡɟ ɤɨɧɤɪɟɬɧɵɯ ɫɢɬɭɚɰɢɣ ɛɵɜɚɟɬ ɭɞɨɛɧɨ ɢɫɩɨɥɶɡɨɜɚɬɶ ɚɩɩɚɪɚɬ 3-
21

ɬɟɧɡɨɪɨɜ. ȼ ɱɚɫɬɧɨɫɬɢ, ɲɟɫɬɶ ɧɟɡɚɜɢɫɢɦɵɯ ɤɨɦɩɨɧɟɧɬ ɚɧɬɢ-
ɫɢɦɦɟɬɪɢɱɧɨɝɨ 4-ɬɟɧɡɨɪɚ Fkl |
wAl wxk wAk wxl |
ɦɨɠɧɨ ɜɵɪɚ- |
|||
ɡɢɬɶ ɱɟɪɟɡ ɤɨɦɩɨɧɟɧɬɵ ɞɜɭɯ 3-ɜɟɤɬɨɪɨɜ E& ɢ B&, ɤɨɬɨɪɵɟ ɨɩɪɟ- |
|||||
ɞɟɥɹɸɬɫɹ ɪɚɜɟɧɫɬɜɚɦɢ: |
|
1 wA& |
|
|
|
& |
|
M, |
(11.1) |
||
E |
c |
wt |
|||
|
|
|
|
||
|
B& |
|
[ A&] . |
(11.2) |
Ɂɞɟɫɶ ɜɜɟɞɟɧɨ ɨɛɨɡɧɚɱɟɧɢɟ
(11.3)
ɉɨɥɹɪɧɵɣ ɜɟɤɬɨɪ E& ɧɚɡɵɜɚɸɬ ɧɚɩɪɹɠɟɧɧɨɫɬɶɸ ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɩɨɥɹ (ɢɥɢ ɩɪɨɫɬɨ ɷɥɟɤɬɪɢɱɟɫɤɢɦ ɩɨɥɟɦ), ɚɤɫɢɚɥɶɧɵɣ ɜɟɤ-
ɬɨɪ B& – ɢɧɞɭɤɰɢɟɣ ɦɚɝɧɢɬɧɨɝɨ ɩɨɥɹ (ɢɥɢ ɦɚɝɧɢɬɧɵɦ ɩɨɥɟɦ),
ɩɨɥɹɪɧɵɣ ɜɟɤɬɨɪ A& – ɜɟɤɬɨɪɧɵɦ ɩɨɬɟɧɰɢɚɥɨɦ, ɚ ɢɫɬɢɧɧɵɣ ɫɤɚɥɹɪ M – ɫɤɚɥɹɪɧɵɦ ɩɨɬɟɧɰɢɚɥɨɦ. ɉɪɟɞɫɬɚɜɥɹɹ Fkl ɜ ɜɢɞɟ ɬɚɛ-
ɥɢɰɵ (ɩɟɪɜɨɦɭ ɢɧɞɟɤɫɭ ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɫɬɪɨɤɚ, ɚ ɜɬɨɪɨɦɭ – ɫɬɨɥɛɟɰ ɬɚɛɥɢɰɵ), ɩɨɥɭɱɢɦ:
|
§ |
0 |
|
|
¨ |
Bz |
|
F |
¨ |
||
¨ |
|
|
|
kl |
B |
|
|
|
¨ |
y |
|
|
¨ |
iE |
x |
|
© |
|
B |
z |
B |
y |
iE |
x |
· |
|
|
|
|
|
¸ |
|
||||
0 |
|
Bx |
iEy ¸ |
|
||||
B |
0 |
|
iE |
|
¸. |
(11.4) |
||
|
x |
|
|
|
|
z ¸ |
|
|
iE |
y |
iE |
z |
0 |
|
¸ |
|
|
|
|
|
|
|
¹ |
|
Ⱦɥɹ ɬɟɧɡɨɪɨɜ ɬɚɤɨɝɨ ɬɢɩɚ ɩɪɢɦɟɧɹɟɬɫɹ ɬɚɤɠɟ ɤɪɚɬɤɚɹ ɫɢɦɜɨɥɢɱɟɫɤɚɹ ɡɚɩɢɫɶ:
Fkl B&, iE& . |
(11.5) |
ɂɫɩɨɥɶɡɭɹ ɜɵɪɚɠɟɧɢɹ (11.4) ɞɥɹ Fkl |
ɢ (10.5) ɞɥɹ ɬɟɧɡɨɪɚ |
ɷɧɟɪɝɢɢ-ɢɦɩɭɥɶɫɚ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɝɨ ɩɨɥɹ Tkl , ɦɨɠɧɨ ɜɵɪɚɡɢɬɶ ɤɨɦɩɨɧɟɧɬɵ ɩɨɫɥɟɞɧɟɝɨ ɱɟɪɟɡ ɤɨɦɩɨɧɟɧɬɵ ɩɨɥɟɣ E& ɢ B&. ȼ ɪɟɡɭɥɶɬɚɬɟ ɧɚɣɞɟɦ, ɱɬɨ ɩɥɨɬɧɨɫɬɶ ɷɧɟɪɝɢɢ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɝɨ ɩɨɥɹ ( T44 ) ɪɚɜɧɚ
22
|
|
|
E2 B2 |
, |
(11.6) |
||
|
|
|
|
8S |
|||
|
|
|
|
|
|
||
ɩɥɨɬɧɨɫɬɶ ɩɨɬɨɤɚ ɷɧɟɪɝɢɢ ( ice&DTD4 ) ɪɚɜɧɚ |
|
||||||
|
|
|
c |
|
&& |
|
|
|
|
|
|
[EB], |
(11.7) |
||
|
|
|
4S |
||||
|
|
|
|
|
|
|
|
ɩɥɨɬɧɨɫɬɶ ɢɦɩɭɥɶɫɚ ( |
i |
e&DTD4 ) ɪɚɜɧɚ |
|
||||
c |
|
||||||
1 |
|
&& |
|
|
|||
|
|
|
|
|
[EB]. |
(11.8) |
|
|
|
|
4Sc |
||||
|
|
|
|
|
|
Ɂɞɟɫɶ e&D ɟɞɢɧɢɱɧɵɣ ɜɟɤɬɨɪ ɜ ɧɚɩɪɚɜɥɟɧɢɢ D-ɣ ɞɟɤɚɪɬɨɜɨɣ
ɨɫɢ, ɚ ɩɨ ɩɨɜɬɨɪɹɸɳɢɦɫɹ ɝɪɟɱɟɫɤɢɦ ɢɧɞɟɤɫɚɦ ɩɨɞɪɚɡɭɦɟɜɚɟɬɫɹ ɫɭɦɦɢɪɨɜɚɧɢɟ ɨɬ 1 ɞɨ 3.
3-ɬɟɧɡɨɪ ɩɥɨɬɧɨɫɬɢ ɩɨɬɨɤɚ ɢɦɩɭɥɶɫɚ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɝɨ ɩɨɥɹ ɢɦɟɟɬ ɜɢɞ
TDE |
E2 B2 |
GDE |
EDEE BDBE |
. |
(11.9) |
|
8S |
4S |
|||||
|
|
|
|
ɉɭɫɬɶ ɜɧɟ ɬɟɥɚ, ɨɝɪɚɧɢɱɟɧɧɨɝɨ ɧɟɤɨɬɨɪɨɣ ɩɨɜɟɪɯɧɨɫɬɶɸ,
ɢɦɟɟɬɫɹ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɟ ɩɨɥɟ. ɋɢɥɚ F&(S ) , ɞɟɣɫɬɜɭɸɳɚɹ ɧɚ ɟɞɢɧɢɱɧɭɸ ɩɥɨɳɚɞɤɭ ɩɨɜɟɪɯɧɨɫɬɢ ɬɟɥɚ ɫɨ ɫɬɨɪɨɧɵ ɷɬɨɝɨ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɝɨ ɩɨɥɹ, ɪɚɜɧɚ ɢɦɩɭɥɶɫɭ, ɜɬɟɤɚɸɳɟɦɭ ɜ ɬɟɥɨ ɱɟɪɟɡ ɷɬɭ ɩɥɨɳɚɞɤɭ ɜ ɟɞɢɧɢɰɭ ɜɪɟɦɟɧɢ, ɬɨ ɟɫɬɶ
|
|
|
E2 B2 & |
& & & |
& & & |
|
|
& |
(S ) |
& |
E(EN ) B(BN ) |
|
|||
F |
|
eDTDENE |
|
N |
|
|
, (11.10) |
|
8S |
4S |
|
ɝɞɟ N& – ɟɞɢɧɢɱɧɵɣ ɜɟɤɬɨɪ ɜɧɭɬɪɟɧɧɟɣ ɧɨɪɦɚɥɢ ɤ ɩɨɜɟɪɯɧɨɫɬɢ ɬɟɥɚ.
Ⱦɥɹ ɨɛɴɟɦɧɨɣ ɩɥɨɬɧɨɫɬɢ ɫɢɥɵ, ɞɟɣɫɬɜɭɸɳɟɣ ɫɨ ɫɬɨɪɨɧɵ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɝɨ ɩɨɥɹ ɧɚ ɞɜɢɠɭɳɢɟɫɹ ɜ ɧɟɦ ɡɚɪɹɞɵ, ɜ ɫɨɨɬɜɟɬɫɬɜɢɢ ɫ (8.1) ɢɦɟɟɦ:
& |
(V ) |
& |
|
(V ) |
1 |
& |
j |
& |
1 |
&& |
(11.11) |
F |
|
e F |
|
c |
e F |
UE |
c |
[ jB] , |
|||
|
|
D |
D |
D Dl |
l |
|
|
|
ɚ ɞɥɹ ɫɢɥɵ, ɞɟɣɫɬɜɭɸɳɟɣ ɧɚ ɬɨɱɟɱɧɵɣ ɡɚɪɹɞ qa , ɩɨɥɭɱɢɦ:
23

& |
& & |
q |
a ª |
& |
& & |
º |
|
|
Fa |
qa E(ra ,t) |
|
|
|
(11.12) |
|||
c |
¬va (t)B(ra ,t)¼. |
12. ɉɪɟɨɛɪɚɡɨɜɚɧɢɟ ɩɨɥɟɣ
ɇɚɣɞɟɦ ɡɚɤɨɧ ɩɪɟɨɛɪɚɡɨɜɚɧɢɹ ɩɨɥɟɣ E& ɢ B& ɩɪɢ ɩɟɪɟɯɨɞɟ ɨɬ ɨɞɧɨɣ ɢɧɟɪɰɢɚɥɶɧɨɣ ɫɢɫɬɟɦɵ ɨɬɫɱɟɬɚ K ɤ ɞɪɭɝɨɣ ɢɧɟɪɰɢɚɥɶɧɨɣ ɫɢɫɬɟɦɟ ɨɬɫɱɟɬɚ K c. ɉɪɢ ɬɚɤɨɦ ɩɟɪɟɯɨɞɟ ɤɨɦɩɨɧɟɧɬɵ 4- ɬɟɧɡɨɪɚ ɩɪɟɨɛɪɚɡɭɸɬɫɹ ɤɚɤ ɩɪɨɢɡɜɟɞɟɧɢɹ ɤɨɦɩɨɧɟɧɬ 4- ɜɟɤɬɨɪɨɜ. ȼ ɱɚɫɬɧɨɫɬɢ, ɞɥɹ ɬɟɧɡɨɪɚ ɷɥɟɤɬɪɨɦɚɝɧɢɬɧɨɝɨ ɩɨɥɹ ɢɦɟɟɦ
|
|
|
Fklc /kp/lq Fpq . |
|
(12.1) |
ɉɭɫɬɶ ɫɢɫɬɟɦɚ |
Kc ɞɜɢɠɟɬɫɹ ɨɬɧɨɫɢɬɟɥɶɧɨ ɫɢɫɬɟɦɵ |
K ɫɨ |
|||
ɫɤɨɪɨɫɬɶɸ |
& |
|
c |
ɧɚɩɪɚɜɢɬɶ ɩɚɪɚɥɥɟɥɶ- |
|
u |
. ȿɫɥɢ ɞɟɤɚɪɬɨɜɵ ɨɫɢ x ɢ x |
ɧɨ ɷɬɨɣ ɫɤɨɪɨɫɬɢ, ɬɨ ɭ ɦɚɬɪɢɰɵ / ɨɤɚɠɭɬɫɹ ɨɬɥɢɱɧɵɦɢ ɨɬ ɧɭɥɹ ɥɢɲɶ ɫɥɟɞɭɸɳɢɟ ɷɥɟɦɟɧɬɵ:
/ |
/ |
44 |
* |
|
1 |
|
, / |
22 |
/ |
33 |
1, |
|
|
|
|||||||||
11 |
|
|
1 u2 |
c2 |
|
|
|||||
|
|
|
|
|
|
|
|
||||
|
|
|
/ |
/ |
41 |
i*u . |
|
|
|
(12.2) |
|
|
|
|
14 |
|
|
c |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ɂɫɩɨɥɶɡɭɹ (11.4), (12.1) ɢ (12.2), ɩɨɥɭɱɢɦ ɮɨɪɦɭɥɵ ɩɪɟɨɛɪɚɡɨɜɚɧɢɹ ɤɨɦɩɨɧɟɧɬ ɩɨɥɟɣ:
Exc iF14c i/1 p/4q Fpq |
i/11/44 F14 i/14/41F41 |
|||||||
i* |
2 |
§ |
|
u2 |
· |
iF14 |
Ex , |
|
|
¨1 |
c |
2 |
¸F14 |
||||
|
|
© |
|
|
¹ |
|
|
c |
c |
|
/2 p/3q Fpq |
/22/33F23 |
F23 |
Bx , |
|||||
Bx |
F23 |
|
|||||||||
c |
c |
i/2 p |
/4q Fpq |
i/22 /41F21 /44 F24 |
|||||||
Ey |
iF24 |
||||||||||
|
*u F |
i*F |
* |
§ |
u B E |
· |
, |
||||
|
|
c |
21 |
24 |
|
¨ |
c |
z |
|
y ¸ |
|
|
|
|
|
|
© |
|
|
¹ |
|
||
|
|
|
|
|
24 |
|
|
|
|
|
|
Ezc |
§u |
· |
, Bcy |
*¨ |
By Ez ¸ |
||
|
© c |
¹ |
|
*§¨By u Ez ·¸, Bzc © c ¹
*§¨Bz u Ey ·¸. © c ¹
ɉɨɥɭɱɟɧɧɵɟ ɫɨɨɬɧɨɲɟɧɢɹ ɦɨɠɧɨ ɩɟɪɟɩɢɫɚɬɶ ɜ ɜɢɞɟ, ɧɟ ɫɜɹɡɚɧɧɨɦ ɫ ɜɵɛɨɪɨɦ ɤɨɨɪɞɢɧɚɬɧɵɯ ɨɫɟɣ:
& |
& |
& |
§ & |
|
1 |
&& |
· |
, |
||
E||c |
E|| ; EAc |
*¨EA |
c |
[uBA] |
¸ |
|||||
|
|
|
© |
|
|
|
¹ |
|
||
& |
& |
& |
§ & |
1 |
|
&& |
· |
. |
(12.3) |
|
B||c |
B|| |
; BAc |
*¨BA |
c |
[uEA]¸ |
|||||
|
|
|
© |
|
|
¹ |
|
|
ɋɨɫɬɚɜɥɹɸɳɢɟ ɩɨɥɟɣ E&|| ɢ B&|| ɩɚɪɚɥɥɟɥɶɧɵ, ɚ ɫɨɫɬɚɜɥɹɸɳɢɟ
E&A ɢ B&A ɩɟɪɩɟɧɞɢɤɭɥɹɪɧɵ ɫɤɨɪɨɫɬɢ u&.
13. ɂɧɜɚɪɢɚɧɬɵ ɩɨɥɹ
ɂɡ ɜɟɤɬɨɪɨɜ E& ɢ B& ɦɨɠɧɨ ɫɨɫɬɚɜɢɬɶ 4-ɫɤɚɥɹɪɵ, ɬɨ ɟɫɬɶ ɢɧɜɚɪɢɚɧɬɧɵɟ ɜɟɥɢɱɢɧɵ, ɧɟ ɦɟɧɹɸɳɢɟɫɹ ɩɪɢ ɩɟɪɟɯɨɞɟ ɨɬ ɨɞɧɨɣ ɢɧɟɪɰɢɚɥɶɧɨɣ ɫɢɫɬɟɦɵ ɨɬɫɱɟɬɚ ɤ ɞɪɭɝɨɣ. ɉɪɟɠɞɟ ɜɫɟɝɨ ɡɚɦɟɬɢɦ, ɱɬɨ 4-ɫɤɚɥɹɪ ɨɛɹɡɚɬɟɥɶɧɨ ɞɨɥɠɟɧ ɛɵɬɶ 3-ɫɤɚɥɹɪɨɦ, ɩɨɷɬɨ-
ɦɭ ɜɧɚɱɚɥɟ ɡɚɣɦɟɦɫɹ 3-ɫɤɚɥɹɪɚɦɢ. ɂɡ ɞɜɭɯ ɜɟɤɬɨɪɨɜ E& ɢ B&
ɦɨɠɧɨ ɫɨɫɬɚɜɢɬɶ ɬɨɥɶɤɨ ɬɪɢ ɧɟɡɚɜɢɫɢɦɵɯ 3-ɫɤɚɥɹɪɚ: E2 , B2 ɢ
&& |
|
|
|
|
|
&& |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(EB) . (Ɍɨɱɧɟɟ, (EB) – ɩɫɟɜɞɨɫɤɚɥɹɪ.) ɂɫɩɨɥɶɡɭɹ ɫɨɨɬɧɨɲɟɧɢɹ |
|||||||||||||||||||||||||||||||
(12.3), ɩɨɥɭɱɢɦ: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
Ec |
2 |
E||c |
2 |
|
2 |
|
2 |
* |
2 |
§ |
2 |
|
2 |
|
& |
&& |
]) |
u2 |
2 · |
, |
(13.1) |
||||||||||
|
|
EAc |
|
E|| |
|
¨EA |
|
c |
(EA[uBA |
|
c |
2 |
BA ¸ |
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
© |
|
|
|
|
|
|
|
|
|
|
|
|
|
¹ |
|
|
||||
Bc |
2 |
B||c |
2 |
|
2 |
|
2 |
* |
2 |
§ |
2 |
2 |
|
& |
|
&& |
|
|
|
u2 |
2 |
· |
, |
(13.2) |
|||||||
|
|
BAc |
|
B|| |
|
|
¨BA |
c |
(BA[uEA]) |
|
c |
2 |
EA |
¸ |
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
© |
|
|
|
|
|
|
|
|
|
|
|
|
¹ |
|
|
|||||
&c&c |
|
|
c c |
|
&c |
&c |
|
|
|
|
|
|
2 |
§ |
|
& & |
|
1 |
|
|
|
|
&& |
|
&& |
· |
|||||
(E B ) |
E||B|| |
(EABA) E||B|| * |
|
¨ |
(EABA) |
|
|
|
|
|
([uBA][uEA]) ¸ |
||||||||||||||||||||
|
|
c |
2 |
|
|||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
© |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
¹ |
|
|
|
|
|
|
|
|
E||B|| |
& & |
|
|
|
|
|
&& |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
(EABA) |
|
(EB) . |
|
|
|
|
|
|
|
|
|
|
|
|
(13.3) |
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
&& |
|
ɂɡ (13.3) ɫɥɟɞɭɟɬ, ɱɬɨ 3-ɫɤɚɥɹɪ (EB) ɹɜɥɹɟɬɫɹ ɬɚɤɠɟ ɢ 4- |
|
ɫɤɚɥɹɪɨɦ. ɗɬɨ ɭɬɜɟɪɠɞɟɧɢɟ ɩɪɢɧɹɬɨ ɡɚɩɢɫɵɜɚɬɶ ɜ ɜɢɞɟ |
|
&& |
(13.4) |
(EB) inv. |
ɂɫɩɨɥɶɡɭɹ (13.1) ɢ (13.2), ɧɟɬɪɭɞɧɨ ɭɛɟɞɢɬɶɫɹ, ɱɬɨ 4-
ɫɤɚɥɹɪɨɦ ɹɜɥɹɟɬɫɹ ɬɚɤɠɟ ɪɚɡɧɨɫɬɶ ɤɜɚɞɪɚɬɨɜ ɩɨɥɟɣ: |
|
E2 B2 inv. |
(13.5) |
ɋɭɦɦɚ ɤɜɚɞɪɚɬɨɜ ɩɨɥɟɣ 4-ɫɤɚɥɹɪɨɦ ɧɟ ɹɜɥɹɟɬɫɹ. Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɫɭɳɟɫɬɜɭɟɬ ɥɢɲɶ ɞɜɚ ɧɟɡɚɜɢɫɢɦɵɯ ɢɧɜɚɪɢɚɧɬɚ.
14.ɍɪɚɜɧɟɧɢɹ Ɇɚɤɫɜɟɥɥɚ
ȼɤɥɚɫɫɢɱɟɫɤɨɣ ɷɥɟɤɬɪɨɞɢɧɚɦɢɤɟ ɩɪɢ ɨɩɢɫɚɧɢɢ ɥɸɛɵɯ ɩɪɨɰɟɫɫɨɜ ɜ ɩɪɢɧɰɢɩɟ ɦɨɠɧɨ ɩɨɥɶɡɨɜɚɬɶɫɹ ɬɨɥɶɤɨ ɬɟɧɡɨɪɨɦ ɩɨɥɹ Fkl , ɧɟ ɩɪɢɧɢɦɚɹ ɜɨ ɜɧɢɦɚɧɢɟ ɟɝɨ ɫɜɹɡɶ (7.2) ɫ 4-ɩɨɬɟɧɰɢɚɥɨɦ
Ak ɢ ɜɨɨɛɳɟ ɧɟ ɪɚɫɫɦɚɬɪɢɜɚɹ ɩɨɫɥɟɞɧɢɣ. ɉɪɢ ɬɚɤɨɦ ɩɨɞɯɨɞɟ ɪɚɜɟɧɫɬɜɨ (7.3)
wFml wFkm wFlk |
0 |
(14.1) |
||
wx |
wx |
wx |
|
|
k |
l |
m |
|
|
ɫɥɟɞɭɟɬ ɪɚɫɫɦɚɬɪɢɜɚɬɶ ɧɟ ɤɚɤ ɬɨɠɞɟɫɬɜɨ, ɚ ɤɚɤ ɭɪɚɜɧɟɧɢɟ, ɤɨɬɨɪɨɦɭ ɞɨɥɠɟɧ ɭɞɨɜɥɟɬɜɨɪɹɬɶ ɬɟɧɡɨɪ Fkl . Ʉɪɨɦɟ ɬɨɝɨ, ɬɟɧɡɨɪ Fkl
ɞɨɥɠɟɧ ɭɞɨɜɥɟɬɜɨɪɹɬɶ ɭɪɚɜɧɟɧɢɸ (9.1)
wFkl |
4S |
jk . |
(14.2) |
|
wxl |
c |
|||
|
|
Ɉɛ ɷɬɢɯ ɭɪɚɜɧɟɧɢɹɯ ɝɨɜɨɪɹɬ ɤɚɤ ɨɛ ɭɪɚɜɧɟɧɢɹɯ Ɇɚɤɫɜɟɥɥɚ, ɡɚɩɢɫɚɧɧɵɯ ɜ ɪɟɥɹɬɢɜɢɫɬɫɤɢ ɤɨɜɚɪɢɚɧɬɧɨɦ ɜɢɞɟ.
ȼɵɪɚɡɢɜ ɫɨɝɥɚɫɧɨ (11.4) ɤɨɦɩɨɧɟɧɬɵ ɬɟɧɡɨɪɚ Fkl ɱɟɪɟɡ ɤɨɦ-
ɩɨɧɟɧɬɵ ɜɟɤɬɨɪɨɜ E& ɢ B&, ɩɟɪɟɩɢɲɟɦ ɭɪɚɜɧɟɧɢɹ Ɇɚɤɫɜɟɥɥɚ ɜ ɬɪɟɯɦɟɪɧɨɦ ɜɢɞɟ:
26
|
& |
|
& |
|
|
|
|
|
1 wB |
0, |
|
|
|
||
°rot E |
|
|
(14.3) |
||||
® |
& |
|
c wt |
|
|
|
|
° |
|
0. |
|
|
|
|
|
¯div B |
|
|
|
|
|
||
|
& |
|
1 wE& |
4S & |
, |
|
|
°rot B |
c wt |
c |
j |
(14.4) |
|||
® |
& |
|
|
|
|||
° |
|
4SU. |
|
|
|
|
|
¯div E |
|
|
|
|
|
ɗɬɨ ɞɢɮɮɟɪɟɧɰɢɚɥɶɧɚɹ ɮɨɪɦɚ ɭɪɚɜɧɟɧɢɣ Ɇɚɤɫɜɟɥɥɚ. ɂɯ ɦɨɠɧɨ ɡɚɩɢɫɚɬɶ ɢ ɜ ɢɧɬɟɝɪɚɥɶɧɨɣ ɮɨɪɦɟ:
°³(E&
°L ® & °°³(B ¯SV
& |
|
1 d |
³ |
& |
& |
||
dl ) |
|
|
|
(B dS ) 0, |
|||
c dt |
|||||||
|
|
SL |
|
(14.5) |
|||
dS&) |
|
0. |
|
||||
|
|
|
|
°³(B&
°L ® & °°³(E ¯SV
& |
|
1 d |
³ |
& |
& |
||
dl ) |
|
|
|
(E dS) |
|||
c dt |
|||||||
|
|
SL |
|
|
|||
dS&) |
|
|
|
|
|
||
|
4S³UdV. |
|
V
4S |
³ |
& |
& |
c |
( j dS), |
||
SL |
|
(14.6) |
|
|
|
Ɂɞɟɫɶ L – ɡɚɦɤɧɭɬɵɣ ɤɨɧɬɭɪ, ɧɚ ɤɨɬɨɪɵɣ ɧɚɬɹɧɭɬɚ ɩɨɜɟɪɯɧɨɫɬɶ SL , ɚ SV – ɡɚɦɤɧɭɬɚɹ ɩɨɜɟɪɯɧɨɫɬɶ, ɨɝɪɚɧɢɱɢɜɚɸɳɚɹ ɨɛɴ-
ɟɦ V .
15. ȼɟɤɬɨɪɵ ɩɨɥɹɪɢɡɨɜɚɧɧɨɫɬɢ
ɢ ɧɚɦɚɝɧɢɱɟɧɧɨɫɬɢ
ȼ ɫɥɭɱɚɟ ɩɪɨɢɡɜɨɥɶɧɨɣ ɷɥɟɤɬɪɨɧɟɣɬɪɚɥɶɧɨɣ ɜ ɰɟɥɨɦ ɫɢɫɬɟ-
ɦɵ ɩɥɨɬɧɨɫɬɶ ɡɚɪɹɞɚ U(r&,t) ɢ ɩɥɨɬɧɨɫɬɶ ɬɨɤɚ &j(r&,t) ɦɨɠɧɨ ɜɵ-
ɪɚɡɢɬɶ ɱɟɪɟɡ ɬɚɤ ɧɚɡɵɜɚɟɦɵɟ ɩɨɥɹɪɢɡɨɜɚɧɧɨɫɬɶ P&(r&,t) ɢ ɧɚɦɚɝɧɢɱɟɧɧɨɫɬɶ M& (r&,t) :
|
|
|
& |
|
|
& & |
|
|
(15.1) |
|
|
U(r ,t) |
div P(r ,t) , |
|
|
||||
& |
& |
|
& |
& |
& |
& |
|
|
|
|
|
wP(r,t) |
|
|
|||||
j |
(r |
,t) |
|
|
|
c rotM (r |
,t) , |
(15.2) |
|
|
|
wt |
ɢɥɢ ɠɟ ɜ ɱɟɬɵɪɟɯɦɟɪɧɨɣ ɡɚɩɢɫɢ:
27
j |
c wmkl , |
(15.3) |
k |
wxl |
|
|
|
|
ɝɞɟ mkl – ɚɧɬɢɫɢɦɦɟɬɪɢɱɧɵɣ ɬɟɧɡɨɪ (ɫɪɚɜɧɢɬɟ ɫ (11.5)): |
|
|
mkl |
M&,iP& . |
(15.4) |
ɇɢɠɟ ɦɵ ɞɨɤɚɠɟɦ ɪɚɜɟɧɫɬɜɚ (15.1) ɢ (15.2) ɢ ɨɞɧɨɜɪɟɦɟɧɧɨ
ɩɨɥɭɱɢɦ ɜɵɪɚɠɟɧɢɹ ɞɥɹ ɮɭɧɤɰɢɣ P&(r&,t) ɢ M& (r&,t) ɱɟɪɟɡ ɮɭɧɤ-
ɰɢɢ U(r&,t) ɢ &j(r&,t) .
Ɋɚɜɟɧɫɬɜɨ (15.1) ɜɵɬɟɤɚɟɬ ɢɡ ɫɥɟɞɭɸɳɟɣ ɰɟɩɨɱɤɢ ɩɪɟɨɛɪɚɡɨɜɚɧɢɣ (ɢɧɬɟɝɪɢɪɨɜɚɧɢɟ ɩɪɨɜɨɞɢɬɫɹ ɩɨ ɜɫɟɦɭ ɩɪɨɫɬɪɚɧɫɬɜɭ):
& |
c |
&c |
& |
&c |
U(r,t) |
³dV U(r ,t)G(r |
r ) |
³dV cU(r&c,t)G(r& r&c) G(r&)³dV cU(r&c,t)
³dV cU(r&c,t)[G(r& r&c) G(r&)]
³dV cU(r&c,t)[1 exp(r&c )]G(r& r&c)
c |
&c |
|
&c |
&c |
1 |
& |
&c |
|
||
|
exp(r |
) |
|
|||||||
³dV U(r ,t)(r ) |
& |
|
|
|
G(r |
r ) |
|
|||
|
|
|
|
c |
|
|
|
|
|
|
|
|
|
|
(r |
) |
|
|
|
|
|
|
c |
&c |
|
&c |
|
& |
&c |
|
||
|
&cexp(r |
) 1 |
(15.5) |
|||||||
div ³dV U(r ,t) r |
& |
|
|
G(r |
r ) . |
|||||
|
|
|
|
(r |
c |
|
|
|
|
|
|
|
|
|
|
) |
|
|
|
|
ɉɪɢ ɷɬɢɯ ɩɪɟɨɛɪɚɡɨɜɚɧɢɹɯ ɭɱɬɟɧɚ ɷɥɟɤɬɪɨɧɟɣɬɪɚɥɶɧɨɫɬɶ ɫɢɫɬɟɦɵ:
|
c |
&c |
0 , |
|
(15.6) |
³dV U(r ,t) |
|
||||
|
|
|
|
&c |
|
ɚ ɬɚɤɠɟ ɢɫɩɨɥɶɡɨɜɚɧ ɨɩɟɪɚɬɨɪ ɫɞɜɢɝɚ exp(r ) : |
|
||||
& |
|
&c |
& |
&c |
(15.7) |
G(r ) |
exp(r )G(r |
r ) . |
ɂɡ ɫɪɚɜɧɟɧɢɹ (15.1) ɢ (15.5) ɧɚɯɨɞɢɦ ɫɨɨɬɧɨɲɟɧɢɟ, ɜɵɪɚ-
& |
& |
|
& |
|
|
|
|
|
ɠɚɸɳɟɟ P(r ,t) ɱɟɪɟɡ U(r ,t) : |
|
|
|
|
|
|||
|
|
|
|
|
& |
|
|
|
|
& |
|
|
|
c |
|
|
|
|
& |
c &c |
&cexp(r ) 1 |
& |
&c |
(15.8) |
||
|
P(r ,t) |
³dV U(r ,t) r |
& |
G(r |
r ) . |
|||
|
|
|
|
|
c |
|
|
|
|
|
|
|
|
(r ) |
|
|
|
|
|
|
|
28 |
|
|
|
|
Ⱦɢɮɮɟɪɟɧɰɢɪɭɹ ɨɛɟ ɱɚɫɬɢ ɪɚɜɟɧɫɬɜɚ (15.8) ɩɨ ɜɪɟɦɟɧɢ ɢ
ɭɱɢɬɵɜɚɹ ɡɚɤɨɧ ɫɨɯɪɚɧɟɧɢɹ ɡɚɪɹɞɚ |
|
|
|
|
||||||
|
& |
|
|
|
|
|
|
|
|
|
|
c |
|
|
c |
|
&c |
|
|
|
|
|
wU(r ,t) |
|
& |
|
|
|
(15.9) |
|||
|
wt |
|
j(r ,t) 0 , |
|
||||||
|
|
|
|
|
|
|
|
|
|
|
ɩɨɥɭɱɚɟɦ |
|
|
|
|
|
|
|
|
|
|
& |
|
|
&c |
|
|
|
|
&c |
|
|
wP |
³dV cr&cexp(&r |
) 1G(r& r&c) wU(r ,t) |
|
|||||||
wt |
|
|
c |
|
|
|
|
wt |
|
|
|
(r ) |
|
|
|
|
|||||
|
& |
|
|
|
|
|
|
|
|
|
|
|
c |
|
|
|
|
|
& |
|
|
³dV cr&cexp(&r ) 1G(r& |
|
|
|
|||||||
r&c)( cj(r&c,t)) |
|
|||||||||
|
c |
|
|
|
|
|
|
|
|
|
|
(r |
) |
|
|
|
|
|
|
||
|
|
|
|
|
|
& |
|
|
|
|
|
& |
|
|
|
|
c |
|
|
||
|
|
|
|
|
|
|
) 1G(r& |
r&c) |
|
|
³dV c( cj(r&c,t)) r&cexp(&r |
|
|
||||||||
|
|
|
|
|
|
c |
|
|
|
|
|
|
|
|
|
|
(r |
) |
|
|
|
|
|
|
|
|
|
& |
|
|
|
|
|
& |
|
|
|
|
|
c |
r&c) . |
(15.10) |
|
³dV c( j(r&c,t) c) r&cexp(&r ) 1G(r& |
||||||||||
|
|
|
|
|
|
c |
|
|
||
|
|
|
|
|
|
(r |
|
) |
|
|
ɉɟɪɜɵɣ ɢɡ ɩɨɥɭɱɟɧɧɵɯ ɢɧɬɟɝɪɚɥɨɜ ɩɪɟɨɛɪɚɡɭɟɬɫɹ ɜ ɢɧɬɟɝɪɚɥ ɩɨ ɛɟɫɤɨɧɟɱɧɨ ɭɞɚɥɟɧɧɨɣ ɩɨɜɟɪɯɧɨɫɬɢ, ɤɨɬɨɪɵɣ ɨɛɪɚɳɚɟɬɫɹ ɜ ɧɭɥɶ ɜɫɥɟɞɫɬɜɢɟ ɨɬɫɭɬɫɬɜɢɹ ɧɚ ɷɬɨɣ ɩɨɜɟɪɯɧɨɫɬɢ ɬɨɤɨɜ:
|
|
|
& |
|
|
|
|
& |
|
c |
|
r&c) |
|
³dV c( cj(r&c,t)) r&cexp(&r ) 1G(r& |
|
|||||
|
|
|
c |
|
|
|
|
(r ) |
|
|
|
||
|
& |
|
|
|
|
|
& & |
|
c |
|
|
|
|
|
|
) 1G(r& |
r&c) 0 . |
(15.11) |
||
³(dScj(r&c,t)) r&cexp(&r |
||||||
|
c |
|
|
|
|
|
|
(r |
) |
|
|
|
ȼ ɩɨɞɵɧɬɟɝɪɚɥɶɧɨɦ ɜɵɪɚɠɟɧɢɢ ɜɬɨɪɨɝɨ ɢɧɬɟɝɪɚɥɚ ɜɵɩɨɥɧɹɟɦ ɞɢɮɮɟɪɟɧɰɢɪɨɜɚɧɢɟ ɩɨ ɲɬɪɢɯɨɜɚɧɧɨɣ ɩɟɪɟɦɟɧɧɨɣ, ɭɱɢɬɵ-
|
|
|
|
|
|
& c |
& |
&c |
|
|
& |
|
& |
|
|
&c |
|
|
|
|
|
ɜɚɹ ɫɨɨɬɧɨɲɟɧɢɟ ( j )G(r |
r ) |
|
( j )G(r |
|
r ) : |
|
|
|
|||||||||||||
|
|
|
|
|
& |
|
|
|
|
|
|
|
& |
|
|
|
|
|
|
|
|
& |
|
|
|
|
|
c |
1G(r& r&c) |
|
& |
|
c |
|
|
|
|
|
|
|
|||
( j c) r&cexp(&r ) |
|
j exp(&r ) 1G(r& r&c) |
|||||||||||||||||||
|
|
|
|
|
c |
|
|
|
|
|
|
|
c |
|
|
|
|
|
|
|
|
|
|
|
|
(r |
) |
|
|
|
|
|
|
|
(r ) |
|
|
|
|
||||
|
|
|
|
|
& |
|
|
|
|
|
|
|
& |
|
|
|
|
|
|
||
|
& |
|
|
|
|
c |
|
|
|
|
|
& |
|
|
c |
|
|
|
|
|
|
&c |
c |
exp(r ) 1 |
|
& |
&c |
|
exp(r |
|
) 1 |
& |
&c |
||||||||||
|
|
|
j |
|
|||||||||||||||||
r ( j ) |
|
|
&c |
|
G(r r ) |
|
&c |
|
|
|
|
G(r |
r ) |
||||||||
|
|
|
|
(r ) |
|
|
|
|
|
|
|
(r |
) |
|
|
|
|
||||
|
|
|
& |
|
|
& |
|
|
& |
|
|
|
& |
|
|
|
|
|
|
|
|
|
|
&c |
|
|
|
c |
|
|
c |
|
|
|
c |
|
|
|
& |
|
&c |
|
|
|
|
|
|
(r )exp(r ) exp(r |
) 1 |
|
|
|
|||||||||||||
|
r ( j ) |
|
|
|
|
&c |
|
2 |
|
|
|
|
|
G(r |
r ) |
||||||
|
|
|
|
|
|
|
|
|
(r ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
& |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
& |
|
|
|
|
|
c |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
&c |
|
|
exp(r ) 1 |
|
|
& |
|
&c |
|
|
|
|
|
|
|
|
||||||
|
|
|
|
r ( j ) |
|
|
&c |
|
|
G(r r ) |
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
(r |
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
& |
|
|
|
|
|
& |
|
|
|
|
|
|
& |
|
|
|
& |
|
|
|
|
|
& |
|
|
|
|
c |
|
|
|
|
c |
|
|
|
|
|
||
& |
&c |
|
&c |
|
|
|
&c |
|
|
exp(r ) 1 (r ) |
|
& |
&c |
||||||||||||||
jG(r r ) j(r ) r ( j ) |
|
|
|
|
&c |
|
2 |
|
|
|
G(r |
r ) |
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(r ) |
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
& |
|
|
|
|
|
& |
|
|
|
|
|
|
||
|
& |
|
|
|
|
|
& |
|
|
|
|
|
|
c |
|
|
|
|
|
|
c |
|
|
|
|
|
|
|
& |
|
&c |
|
|
|
&c |
|
|
exp(r ) 1 (r ) |
|
& |
|
&c |
|
||||||||||||
|
|
|
|
&c |
|
|
|
|
|
|
|||||||||||||||||
|
jG(r r ) [ [r j(r ,t)]] |
|
|
|
&c |
|
2 |
|
|
|
G(r |
r ) . |
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(r |
) |
|
|
|
|
|
|
|
|
|
||
ȼ ɪɟɡɭɥɶɬɚɬɟ ɩɨɥɭɱɚɟɦ: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
& |
|
|
& |
|
|
|
|
|
& |
|
|
|
|
|
&c |
|
|
|
|
&c |
|
½ |
|
|
|
||
wP |
|
&c |
|
|
|
|
&c |
|
|
|
|
|
|
|
|
|
|
& |
&c |
||||||||
|
c |
|
|
|
|
&c |
|
|
exp(r |
) 1 (r |
) |
|
|
||||||||||||||
wt |
³dV ® j(r ,t) [ [r j(r ,t)]] |
|
|
|
|
&c |
|
2 |
|
|
|
¾G(r r ) |
|||||||||||||||
|
¯ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(r ) |
|
|
|
|
¿ |
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
& |
|
|
|
|
|
|
& |
|
|
|
|
|
|
|
& |
|
|
|
|
|
|
& |
|
|
|
|
|
c |
|
|
|
|
|
|
c |
|
|
|
|
|
|
|
& |
|
|
|
c |
&c |
|
&c |
|
exp(r ) 1 (r ) |
|
& |
|
&c |
|
|||||||||||||
j |
|
|
|
j |
|
|
|
|
|
||||||||||||||||||
(r,t) |
rot ³dV [r |
(r ,t)] |
|
|
|
|
&c |
|
|
2 |
|
|
|
G(r |
r ) . (15.12) |
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(r ) |
|
|
|
|
|
|
|
|
|
|
|||
Ɉɬɫɸɞɚ |
ɜɵɬɟɤɚɟɬ |
ɪɚɜɟɧɫɬɜɨ |
(15.2) ɢ |
ɫɨɨɬɧɨɲɟɧɢɟ, |
ɜɵɪɚ- |
||||||||||||||||||||||
|
& |
& |
|
|
|
|
& |
|
& |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ɠɚɸɳɟɟ M (r |
,t) ɱɟɪɟɡ j(r ,t) : |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
& |
|
|
|
|
|
& |
|
|
|
|
|
|
|
|
|
& |
|
|
|
|
|
& |
|
|
|
|
|
c |
|
|
|
|
|
c |
|
|
|
|
|
|
|
|
|
& |
1 |
|
c &c |
&c |
|
exp(r |
) 1 |
(r ) |
|
& |
|
&c |
|
(15.13) |
|||||||||||||
M (r,t) |
c |
³dV [r |
j(r |
,t)] |
|
|
|
&c |
|
2 |
|
|
|
G(r |
r ) . |
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
(r |
) |
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
&c |
|
|
|
ɜ ɜɢɞɟ ɪɹɞɚ ɢ ɜɵɩɨɥɧɢɜ |
||||||||||
Ɂɚɩɢɫɚɜ ɨɩɟɪɚɬɨɪ ɫɞɜɢɝɚ exp(r ) |
|
ɢɧɬɟɝɪɢɪɨɜɚɧɢɹ ɩɨ ɲɬɪɢɯɨɜɚɧɧɨɣ ɩɟɪɟɦɟɧɧɨɣ, ɢɡ (15.8) ɢ (15.13) ɩɨɥɭɱɢɦ:
|
P& |
|
f |
|
|
|
|
|
|
|
|
|
|
|||
|
¦ |
1 |
|
D1 |
D2 |
Dn 1 xD1 xD2 |
xDn 1Ur& |
|
|
|||||||
|
|
|
|
|
||||||||||||
|
|
n 1 n! |
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
& |
1 |
& |
& |
|
|
|
||
|
|
|
|
|
|
|
Ur |
2 |
( r )Ur ... , |
|
|
(15.14) |
||||
& |
1 |
f |
1 |
|
|
|
|
|
|
|
|
&& |
|
|||
M |
|
¦ |
|
|
|
|
|
|
D1 D2 Dn 1 xD1 xD2 xDn 1 |
[r j |
] |
|||||
|
|
(n |
1)! |
|||||||||||||
|
c n 1 |
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
1 |
|
&& |
1 |
& && |
|
|
|
||
|
|
|
|
|
|
|
[r j] |
|
( r )[r j] |
... . |
|
(15.15) |
||||
|
|
|
|
|
|
2c |
6c |
|
ɉɟɪɜɵɟ ɱɥɟɧɵ ɜ ɷɬɢɯ ɪɚɡɥɨɠɟɧɢɹɯ ɩɪɟɞɫɬɚɜɥɹɸɬ ɫɨɛɨɣ ɩɥɨɬɧɨɫɬɢ ɞɢɩɨɥɶɧɵɯ ɦɨɦɟɧɬɨɜ: ɷɥɟɤɬɪɢɱɟɫɤɨɝɨ ɜ (15.14) ɢ ɦɚɝɧɢɬɧɨɝɨ ɜ (15.15). Ɍɨɥɶɤɨ ɷɬɢ ɱɥɟɧɵ ɢ ɦɨɝɭɬ ɞɚɜɚɬɶ ɧɟɧɭɥɟɜɵɟ ɜɤɥɚɞɵ ɜ ɨɛɴɟɦɧɵɟ ɢɧɬɟɝɪɚɥɵ ɩɪɢ ɢɧɬɟɝɪɢɪɨɜɚɧɢɢ ɩɨ ɜɫɟ-
30