Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции / 2.4 Оптроны.docx
Скачиваний:
16
Добавлен:
12.10.2022
Размер:
572.01 Кб
Скачать

Оптроны. Виды и устройство. Работа и применение. Особенности

Оптоэлектронная пара, или оптопара – это полупроводниковый прибор, состоящий из светоизлучающего и фотоприемного элемента, между которыми существует связь через оптический канал. Светоизлучатель, фотоприемник и оптический канал, реализующий гальваническую развязку между входом и выходом, конструктивно объединены в одном корпусе.

Оптопара или оптрон — электронный прибор, состоящий из излучателя света (обычно — светодиод, в ранних изделиях — миниатюрная лампа накаливания) и фотоприемника (биполярных и полевых фототранзисторов, фотодиодов, фототиристоров, фоторезисторов), связанных оптическим каналом и, как правило, объединенных в общем корпусе.

Элементарный оптрон, содержащий один источник и один приемник излучения, называют также оптопарой. Будучи объединенными в микросхему вместе с одним или несколькими согласующими или усиливающими устройствами, оптопары образуют оптоэлектронную интегральную микросхему.

Структурная схема оптрона

Элементарный оптрон, содержащий один источник и один приемник излучения, называют также оптопаройБудучи объединенными в микросхему вместе с одним или несколькими согласующими, или усиливающими устройствами, оптопары образуют оптоэлектронную интегральную микросхему.

Принцип работы оптрона заключается в преобразовании электрического сигнала в свет, его передаче по оптическому каналу и последующем преобразовании обратно в электрический сигнал.

Более подробно:

В оптронах происходит двойное преобразование энергии (рисунок). Входной электрический сигнал (характеризующийся силой тока I1 или напряжением U1) преобразуется источником излучения в световой (поток света Ф1), который передается затем по оптическому каналу к фотоприемнику 3. Фотоприемник осуществляет обратное превращение светового сигнала в электрический I2U2Среда оптического канала может быть управляемой (например, обладать электрооптическими свойствами), что отражено и рисунке введением в схему устройства управления 4, которое преобразует световой поток Ф1 в поток Ф2. Для согласования параметров оптронов с другими элементами электронных схем могут использоваться дополнительные входные и выходные устройства.

На рисунке фотоприемник и излучатель электрически не соединены друг с другом. Такие оптроны с успехом могут использоваться в качестве элементов гальванической развязки. Однако введение электрической, а также оптической обратной связи между компонентами оптрона способно существенно расширить его возможности. В этом случае он может быть использован как прибор, позволяющий генерировать и усиливать электрические и оптические сигналы, как запоминающее устройство и т. д.

Таким образом, в оптронах осуществляется двойное преобразование энергии: электрической в световую и световой снова в электрическую. Это придает оптронам ряд совершенно новых свойств и позволяет на их основе создавать электронные устройства с исключительно своеобразными параметрами и характеристиками.