- •Радиохимия экзамен ответы
- •История развития радиохимии.
- •Особенности радиохимии.
- •Классификация радионуклидов.
- •Естественная радиоактивность;
- •Радиоактивные ряды урана и тория, их открытие.
- •Физические и химические свойства урана.
- •Физические и химические свойства тория.
- •8. Долгоживущие, генетически не связанные, радионуклиды: калий-40, рубидий-87,
- •9.Естественные радионуклиды в почвах Беларуси.
- •10. Космогенные радионуклиды.
- •11. Понятие об ядерных реакциях.
- •12. Техногенные (искусственные) радионуклиды.
- •13. Источники техногенных радионуклидов.
- •14. Физические и химические свойства радионуклидов йода.
- •15. Физические и химические свойства радионуклидов цезия.
- •16. Физические и химические свойства радионуклидов стронция.
- •17. Физические и химические свойства радионуклидов плутония.
- •18. Физические и химические свойства радионуклидов америция.
- •19. Токсичность продуктов ядерного деления.
- •20. Радиохимический анализ сельскохозяйственных объектов.
- •21. Стадии радиохимического анализа.
- •22. Отбор проб сельскохозяйственной продукции для радиохимического анализа.
- •23. Отбор проб почвы для радиохимического анализа.
- •24. Подготовка почвенных проб для определения содержания стронция-90 радиохимическим методом.
- •25. Подготовка проб растительного и животного происхождения для определения содержания стронция-90 радиохимическим методом.
- •26. Озоление растительных проб. Коэффициент озоления.
- •27. Радиометрический анализ выделенного препарата (y-90).
- •28. Коэффициент перехода к абсолютной активности.
- •29. Цель использования пластинок из алюминия при радиометрировании контрольного источника.
- •30. Определение толщины алюминиевых пластинок, используемых при радиометрировании контрольного источника.
- •Энергии бета-спектра
- •31. Применение носителей в радиохимическом анализе.
- •32. Определение выхода носителя стронция.
- •33. Определение выхода носителя иттрия.
- •34. Идентификация и проверка радиохимической чистоты выделенного радионуклида.
- •35. Состояние радиоактивных изотопов в ультрамалых концентрациях.
- •36. Определение титра носителей.
- •37. Адсорбция радиоактивных изотопов.
- •38. Распределение микроконцентраций радиоактивных изотопов между двумя фазами.
- •39. Изотопный обмен.
- •40. Механизмы изотопного обмена.
- •1. Изотопный обмен посредством диссоциации
- •2. Изотопный обмен посредством ассоциации
- •3. Изотопный обмен посредством других обратимых химических процессов
- •4. Изотопный обмен посредством электронного обмена
- •41. Пути получения радиоактивных изотопов. Методы выделения радиоактивных изотопов.
- •42. Образование и классификация радиоактивных отходов.
- •43. Основные стадии обращения с рао.
- •44. Требования к сбору, хранению и удалению радиоактивных отходов из организации.
- •45. Требования к размещению и оборудованию специализированных организаций по обращению с радиоактивными отходами.
- •47. Характеристика радионуклидов чернобыльского выброса.
36. Определение титра носителей.
Титром раствора называется количественное содержание определенного вещества в единице объема раствора (мг/ см3). Титрованные растворы готовят из химически чистых элементов или их соединений, помещая точно взвешенную навеску предварительно рассчитанного по молярной массе вещества в мерную колбу, растворяют и доводят объем до метки дистиллированной водой. Титр полученного раствора по заданному соединению проверяют экспериментально путем осаждения данного соединения (или элемента) из определенного раствора и точного взвешивания высушенного до постоянной массы осадка.
Для приготовления титрованных растворов изотопных, изоморфных и удерживающих носителей используют в зависимости от избранной методики выделения из пробы радиоизотопа нитрата или хлорида стронция, цезия.
Хранить титрованные растворы рекомендуется в мерных колбах с притертыми или хорошо пригнанными резиновыми пробками. Длительное хранение их нежелательно, так как в случае испарения раствора со временем может измениться его титр.
Примеры расчета количества соли стабильного изотопа, необходимого дня приготовления титрованного раствора носителя.
37. Адсорбция радиоактивных изотопов.
Как указывалось выше, адсорбционное соосаждение заключается в переносе вещества из раствора на поверхность твердой фазы, носящей название адсорбента. Адсорбция может происходить на твердой фазе с сильно развитой поверхностью: на мелкокристаллических осадках, коллоидах и т. д. Адсорбция играет огромную роль в гипергенной и техногенной геохимии радионуклидов.
В случае адсорбции на полярных кристаллах адсорбционные явления классифицируют по местонахождению сорбированных ионов. Если последние находятся в поверхностном слое кристаллической решетки — во внутренней обкладке двойного электрического слоя, то такая адсорбция называется первичной. Если адсорбционный ион входит в состав внешней обкладки двойного слоя — находится в растворе у границы раздела фаз, такая адсорбция называется вторичной. Первичную адсорбцию подразделяют на потенциалобразующую и обменную. Потенциалобразующая адсорбция имеет место для весовых концентраций ионов. Первичная обменная адсорбция происходит благодаря кинетическому обмену между ионами поверхности кристалла и раствора.
Вторичная адсорбция также делится на два вида: обменную и ван-дер-ваальсову. Для микроконцентраций радионуклилов имеют значение лишь первичная и вторичная обменные адсорбции.
Адсорбция на ионных кристаллах происходит в соответствии с законом Гана: «Радионуклид адсорбируется на полярном кристалле в том случае, если поверхность кристалла имеет заряд, противоположный заряду иона радионуклида. При этом адсорбция тем сильнее, чем менее растворимо и диссоциировано соединение радионуклида с противоположно заряженным ионом решетки».
Из определения ясно, что первичная адсорбция ионов возможна, если они способны входить в данную кристаллическую решетку (образовывать твердые растворы с осадком, давать смешанные кристаллы и т. д.). Таким образом, первичная адсорбция может быть выражена как распределение вещества между раствором и поверхностью осадка:
где х – количество грамм-ионов микрокомпонента на поверхности осадка; х0 — его количество в системе; х0 - х – количество грамм-ионов микрокомпонента в растворе; D – коэффициент распределения; т – масса осадка; S – удельная поверхность осадка; σ – поверхность, занимаемая 1 г-ионом стабильного элемента; V – объем раствора; С – молярная концентрация макрокомпонента (обмениваемого иона) в растворе.
Если первичная обменная адсорбция происходит лишь на поверхности решетки, то при гомогенном распределении микрокомпонента кинетика адсорбции должна отвечать закону мономолекулярной реакции:
,
где С и Сх – концентрации микрокомпонента в растворе в момент времени t и при достижении равновесия соответственно; А, К и λ. – константы.
Чаще обменная адсорбция является более сложным процессом. Обменная адсорбция протекает быстро на поверхности твердой фазы. За ней следует вторая стадия – медленный переход сорбированного микрокомпонента внутрь твердой фазы – внутренняя адсорбция. В этом случае кинетика адсорбции выражается равенством
.
Вторичная обменная адсорбция, которая происходит во внешней части двойного электрического слоя, экспоненциально зависит от заряда иона. Действительно, эксперименты показали, что при прочих равных условиях адсорбция на отрицательно заряженных кристаллах AgI зависит от заряда иона: Ra2+ : Ас3+ : Th4+ = 7,0 : 75,2 : 100. Адсорбция происходила во внешнем слое, так как катионы не изоморфны с AgI.
