
- •Культивирование клеток теория
- •1. Актуальность применения культур клеток в различных областях биологии, медицины и сельского хозяйства.
- •2. Роль клеточных культур в биотехнологии при производстве биологически активных веществ, белков, ферментов, аминокислот, гормонов, вакцин и др.;
- •3. Применение клеточных культур для диагностики и лечения наследственных заболеваний.
- •4. Применение клеточных культур в качестве тест-объектов при испытании новых фармакологических веществ.
- •5. Применение клеточных культур для сохранения генофонда исчезающих видов животных и растений.
- •6. Аппараты для очистки воды, используемой для приготовления питательных сред или мытья культуральной посуды. Их характеристика и возможности получения сверхчистой и общелабораторной воды.
- •7. Приборы, аппараты и реактивы для мытья и стерилизации посуды.
- •8. Приборы для дозирования, разведения и пробоотбора.
- •9. Боксовые помещения и ламинар-боксы. Их типы, обустройство и значение.
- •10. Лабораторные термостаты. Специальные требования, предъявляемые к лабораторным термостатам для культивирования клеток, и типы их конструкций.
- •12. Лабораторные ферментеры. Их назначение, типы, конструкция и области применения.
- •13. Глубинное культивирование клеточных и бактериальных культур.
- •14. Общая модель динамики роста клеточных культур.
- •15. Специфические особенности работы с ферментерами. Проблемы пенообразования и пеногашения.
- •16. Специфические особенности работы с ферментерами. Хемостаты и турбидостаты.
- •17. Культуральная посуда. Особые требования к свойствам поверхности и материала изделий из стекла и пластика, предназначенных для роста клеток в монослое.
- •18. Специальная культуральная посуда: флаконы, колбы, матрасы, чашки Петри, платы, роллерные сосуды, пробирки, пипетки и т.Д.
- •19. Области применения стеклянной и пластиковой посуды. Основные подходы, способы и степень подготовки культуральной посуды к культивированию клеток.
- •20. Принципы составления питательных сред.
- •21.Устройства для приготовления питательных сред.
- •22. Основные требования, предъявляемые к питательным средам для клеточных культур.
- •23. Установки для стерилизующей фильтрации жидких питательных сред. Микро- и ультрафильтрация питательных сред.
- •24. Основные типы и состав питательных сред для культивирования различных типов клеток.
- •25. Основные питательные потребности клеток.
- •26. Преимущества и недостатки разных типов питательных сред.
- •27. Историческое развитие культивирования микроорганизмов. Работы л.Пастера, р.Коха и др. По созданию методов культивирования и изучению питательных потребностей микроорганизмов.
- •28. Методы выделения чистых культур аэробных и анаэробных микроорганизмов.
15. Специфические особенности работы с ферментерами. Проблемы пенообразования и пеногашения.
Ответ. Биореактор - изолированная система (например, ферментатор), в которую вместе с другими материалами вводят биологические агенты и в результате протекающей реакции происходит их размножение или образование других веществ. Биореакторы, как правило, оборудуются устройствами для регулирования, контроля, добавления и извлечения материалов. Основное требование к биореакторам любого типа сводится к обеспечению оптимальных условий роста продуцента или накоплению синтезируемого им продукта. Специфика биотехнологических процессов состоит в том, что в них участвуют живые клетки, субклеточные структуры или выделенные из клеток ферменты и их комплексы. Это оказывает довольно существенное влияние на процессы массообмена (обмена веществ между различными фазами - перенос кислорода из азообразной фазы в жидкую) и теплообмена (перераспределение тепловой энергии между взаимодействующими фазами). Поэтому одним из важнейших механизмов биореакторов является система перемешивания, обеспечивающая однородность условий в аппарате. Другим существенным различием между биотехнологическими и химическими процессами является необходимость создания аэробных или анаэробных условий, требуемых для культивирования соответствующего организма. Поэтому в определенных случаях необходимо подавать кислород и удалять образующиеся газообразные продукты иного рода, в первую очередь двуокись углерода (СО2). Системы аэрации зачастую бывают очень сложной конструкции, поскольку они должны обеспечить баланс между расходом О2 и его поступлением в нужных количествах, учитывая тот факт, что потребность в кислороде не одинакова на различных стадиях культивирования.Крайне важным является обеспечение должного уровня теплообмена в биореакторах, поскольку жизнедеятельность и метаболическая активность объектов зависит в значительной степени от колебаний температуры. Еще одной серьезной проблемой при культивировании в биореакторах является пенообразование, связанное с необходимостью аэрирования содержимого, в котором постоянно присутствуют поверхностно-активные вещества (ПАВ). Это заставляет интенсивно разрабатывать эффективные системы пеногашения.Специфическим элементом биореактора является система, обеспечивающая стерильность процесса. Стерилизация осуществляется на разных этапах процесса, как до его начала, так и при осуществлении и после окончания. Большинство перемешиваемых и аэрируемых культур во время роста образуют довольно много пены. Образование на поверхности среды культивирования слоя из пузырьков связано с наличием в среде поверхностно-активных веществ (ПАВ), к числу которых относятся продукты распада жиров – мыла, а также белки. ПАВ включают как полярные ионные, так и неполярные группировки. Заряженные группы имеют сродство к водной фазе, а нейтральные выталкиваются в воздушную фазу, где, встраиваясь в стенки газовых пузырьков, увеличивают время их жизни. Умеренное пенообразование способствует росту многих аэробных микроорганизмов (пенный слой – кислородный коктейль). Особое внимание уделяется борьбе с избыточным пенообразованием, так как если не препятствовать этому, пена смачивает фильтры для стерилизации воздуха, что приводит к контаминации культуры посторонней микрофлорой, уменьшению полезного объема биореактора, а также выходу пены наружу. Контроль пенообразования осуществляется путем введения в сосуд специального датчика. Для борьбы с избыточным пенообразованием используется механическое и химическое пеногашение. При механическом пеногашении лопасти пеногасителя размещаются на валу мешалки. При химическом пеногашении в крышке сосуда предусматривается специальный ввод для реагента гашения. Химические пеногасители более дешевы, их используют время от времени при необходимости подавления пенообразования. Однако при добавлении этих веществ может изменяться состав питательной среды. Пеногасящие вещества растительного (кукурузное, касторовое, соевое, подсолнечное масло, масло из семян хлопчатника и другие) и животного (свиной, говяжий, бараний, китовый и другие жиры) происхождения могут служить микроорганизмам источником углерода и энергии и, следовательно, стимулировать их активное развитие. Однако известны случаи, когда природные пеногасители оказывали отрицательное действие на метаболизм клетки. А такие неметаболизируемые пеногасители, как силиконы, в высокой концентрации токсичны. Поэтому пеногасители, являющиеся поверхностно-активными веществами, следует использовать только в очень низких концентрациях и только после тщательной проверки. Пеногасители добавляют непосредственно в среду перед стерилизацией или в ферментер через специальный ввод.