
- •1.Биотехнология как межотраслевая область научно-технического прогресса и раздел практических знаний, этапы ее развития.
- •2. Основные факторы, обусловившие развитие современной биотехнологии.
- •4. Области применения достижении биотехнологии.
- •5. Микроорганизмы (бактерии и высшие протисты) - основные объекты биотехнологии.
- •6. Преимущества микроорганизмов перед другими объектами в решении современных биотехнологических задач.
- •7. Принципы подбора биотехнологических объектов: модельные и базовые микроорганизмы, штаммы микроорганизмов, использующиеся в биотехнологии.
- •8. Выделение и селекция микроорганизмов, продуцентов биологически активных веществ.
- •9. Принципиальные подходы к улучшению штаммов промышленных микроорганизмов.
- •10.Промышленные энзимы, продуцируемые микроорганизмами.
- •11. Различия микроорганизмов по типу питания и отношению к кислороду.
- •12. Клетки животных и растений как объекты биотехнологии.
- •13. Использование клеточных культур в биотехнологических процессах.
- •14. Трансгенные животные и растения как новые объекты биотехнологии.
- •15. Требования, предъявляемые к питательным субстратам, использующимся в биотехнологических процессах.
- •16. Природные сырьевые материалы растительного происхождения.
- •17. Отходы различных производств, как сырье для биотехнологических процессов.
- •18. Химические и нефтехимические субстраты, применяемые в качестве сырья для биотехнологии.
- •19. Преимущества и недостатки биотехнологических производств по сравнению с химическими технологиями.
- •20. Принципиальные схемы биотехнологических процессов, определяющие конструкции биореакторов (ферментеров).
- •21. Основные требования, предъявляемые к системам, используемым для процессов ферментации.
- •22. Типы и режимы ферментации. Периодические процессы.
- •23. Типы и режимы ферментации. Непрерывные процессы.
- •24. Проблемы аэрирования, пеногашения, асептики и стерильности при различных ферментациях.
- •25. Открытые и замкнутые ферментационные системы.
- •27. Основные требования, предъявляемые к биореакторам
- •28. Системы перемешивания, применяемые в современных ферментерах.
- •29. Принципы масштабирования технологических процессов: лабораторные, пилотные и промышленные ферментеры и решаемые с их использованием задачи.
- •30. Специализированные ферментационные технологии: анаэробные, твердофазные и газофазные процессы
- •31. Особенности культивирования клеток животных, виды культур.
- •32. Особенности культивирования клеток растений.
- •33. Конечные стадии получения продуктов биотехнологических процессов.
- •34. Отделение биомассы: флотация, фильтрование и центрифугирование.
- •35. Методы дезинтеграции клеток: физические, химические и энзиматические.
- •36. Выделение целевого продукта: осаждение, экстрагирование, адсорбция, электрохимические методы, ионообменная хроматография.
- •37. Концентрирование, обезвоживание, модификация и стабилизация целевых продуктов биотехнологических процессов.
- •38. Биотехнология производства «одноклеточного» белка.
- •39. Продуценты «одноклеточного» белка: дрожжи и бактерии.
- •40. Продуценты «одноклеточного» белка: водоросли и грибы.
- •41. Требования, предъявляемые к микробному белку и возможности его использования.
- •42. Сырьевая база производства белка одноклеточных организмов; высокоэнергетические субстраты, отходы сельского хозяйства и других производств.
- •43. Область применения энзимов в биотехнологических производствах.
- •44. Преимущества и недостатки энзимных технологий.
- •45. Технология производства энзимов для промышленных целей.
- •46. Требования, предъявляемые к продуцентам энзимов.
- •47. Иммобилизованные энзимы и преимущества их применения в биотехнологии.
- •48. Носители, используемые для иммобилизации энзимов: природные и синтетические органические носители.
- •49. Типы неорганических носителей.
- •50. Способы иммобилизации энзимов: адсорбция, включение в гели и полупроницаемые мембраны; химические методы иммобилизации ферментов.
- •51. Иммобилизованные клетки в биотехнологии
- •52. Получение рекомбинантных белков с помощью прокариотических систем.
- •53. Классификация питательных сред и требования к их составу.
- •54. Использование достижений биотехнологии в охране окружающей среды.
- •56. Получение и использование трансгенных растений для повышения продукции сельского хозяйства и качества продуктов питания.
- •57. Способы индентификации трансгенной днк.
- •58. Возможные риски использования генетически модифицированных организмов для здоровья человека и окружающей среды.
- •59. Достижения молекулярной биотехнологии в генотерапии.
- •60. Биотехнология очистки промышленных отходов.
- •61. Биотехнологические способы получения энергоносителей.
- •62. Исследования генома человека и его результаты.
- •63. Получение рекомбинантных белков с помощью эукариотических систем.
- •64. Основные принципы получения трансгенных организмов.
15. Требования, предъявляемые к питательным субстратам, использующимся в биотехнологических процессах.
Питательные среды должны обеспечивать рост, развитие продуцента и эффективный синтез целевого продукта. Для производства питательных сред необходима сырьевая база. Компонентный состав сред зависит от потребностей продуцента. 1. Постоянным компонентом ПС является вода, в которой нуждаются все живые клетки. 2. Среды должны содержать все необходимые питательные вещества. 3. Изотоничность – содержание набора солей для поддержания осмотического давления, определенной концентрации NaCl. 4. Оптимальная pH (кислотность) среды – 7,2-7,6 5. Оптимальное содержание растворенного кислорода
6. Прозрачность (чтобы был виден рост бактерий, особенно для жидких сред). 7. Стерильность (чтобы не было других бактерий).
При получении энзимных препаратов сырьём может быть лишь тот материал, который легко доступен, может быть получен в большом количестве, имеет высокую концентрацию целевого энзима. Только применение сред строго определенного состава позволяет точно регистрировать и регулировать протекающие в культуральной среде процессы, добиваясь их оптимизации.
16. Природные сырьевые материалы растительного происхождения.
Источником природного сырья являются сельское хозяйство и отрасли лесоводства. Получаемые в этих отраслях материалы представляют собой соединения различной химической сложности и включают сахара, крахмал, целлюлозу, гемицеллюлозу и лигнин. Из первичных сырьевых материалов в процессе производства тех или иных продуктов традиционными методами получается огромное число разнообразных побочных продуктов, которые в силу достаточно высокой питательной ценности могут использоваться в биотехнологических процессах.
Наиболее подходящим субстратом является сырье, используемое в производстве сахара - сахарная свекла и сахарный тростник. Уже сейчас сахарный тростник используется в качестве субстрата для бразильской "топливной" программы (производство этанола как горючего для двигателей внутреннего сгорания).
Крахмалосодержащие сельскохозяйственные продукты, включающие различные злаки, такие, как кукуруза, рис, пшеница, картофель, различные корнеплоды, сладкий картофель и маниока. Некоторым недостатком крахмала является то, что до использования в качестве питательного субстрата он обычно должен быть разрушен до моносахаридов или олигосахаридов путем ферментативного переваривания или гидролиза.
Целлюлоза, являющийся ценным источником энергии и углерода. Необходимым условием подготовки данного материала к использованию в качестве биотехнологического сырья является ее гидролиз до простых водорастворимых сахаров (глюкозы, целлобиозы). Как ни странно, но это до сих пор представляет довольно трудную задачу. Наибольшие сложности встречаются при попытках утилизации древесины, в которой целлюлоза находится в комплексе с гемицеллюлозой и лигнином. Лигноцеллюлозные комплексы характеризуются очень высокой степенью устойчивости к природным силам биодеградации. Именно это свойство и обусловливает долговечность деревьев и, естественно, построек из дерева, поскольку деревья состоят главным образом из лигноцеллюлозы.
Чистая целлюлоза может быть довольно легко разрушена путем химического или ферментативного гидролиза до растворимых сахаров, которые затем легко подвергаются ферментации (сбраживанию) микроорганизмами с образованием этанола, бутанола, ацетона, одноклеточного белка (SCP), метана и многих других продуктов.
Сам по себе лигнин также крайне устойчив к деградационным воздействиям как химического, так и биологического характера, вследствие чего представляет серьезную проблему как загрязнитель внешней среды при производстве бумаги. Причем проблема эта в настоящий момент далека от разрешения. Причина основная сводится к сложности пространственной организации молекул этого вещества -гемицеллюлозы, основным компонентом которой является второй по распространенности растительный биополимер ксилан, состоящий из остатков ксилозы, а также небольших количеств арабинозы и глюкуроновой кислоты. Он является не только отходом при гидролизе растительного сырья, но и сам по себе может служить биотехнологическим сырьем. Химический гидролиз ксилана приводит к накоплению токсичных для микроорганизмов соединений, поэтому в последнее время разрабатываются методы ферментативного гидролиза ксилана.