
- •Экзаменационные вопросы по дисциплине «Биология» для студентов 1 курса лечебного и педиатрического факультетов Раздел «Общая биология»
- •3. Клетка – элементарная и генетическая, структурно-функциональная и биологическая единица живого. Клетка Эукариот, Прокариот, Архей. Основные положения современной клеточной теории.
- •4. Современные представления об организации эукариотической клетки. Сравнительный анализ клеточной организации животных и растений.
- •Значение работ г.Менделя. Закономерности наследования при моногибридном скрещивании. Дигибридное и полигибридное скрещивание. Менделирующие признаки человека.
- •Основы классической генетики. Хромосомная теория т.Моргана. Сцепление генов. Кроссинговер. Метод соматической гибридизации клеток и его применение для картирования генов человека в хромосомах.
- •Взаимодействие аллельных генов. Характер взаимодействия аллелей в детерминации групп крови системы аво у человека.
- •Понятие о неаллельных генах. Их локализация в хромосомах. Эпистаз. Полимерия.
- •13. Основные этапы репликации днк эукариотических клеток.
- •14. Репарация генетического материала. Фотореактивация. Темновая репарация, её этапы. Мутации, связанные с нарушением репарации и их роль в патологии.
- •15. Кодирование и реализация биологической информации в клетке. Кодовая система днк и белка. Центральная догма молекулярной биологии.
- •16. Экспрессия генов в процессе биосинтеза белка. Этапы биосинтеза белка. Особенности транскрипции у эукариот.
- •1. Транскрипция днк.
- •17. Биосинтез белка. Этапы трансляции у эукариот. Сравнительный анализ биосинтеза белка у про- и эукариот.
- •19. Значение генной инженерии для медицины. Схема получения генно-инженерного инсулина. Принципы генной терапии.
- •20. Регуляция экспрессии генов у прокариот. Структурные и регуляторные гены. Особенности регуляции работы генов у эукариот.
- •22. Норма реакции генетически детерминированных признаков. Фенокопии. Адаптивный характер модификации. Роль наследственности и среды в развитии, обучении и воспитании человека.
- •28. Факторы дифференцировки: ооплазматическая сегрегация, эмбриональная индукция. Роль наследственности и среды в онтогенезе. Критические периоды развития. Тератогенные факторы.
- •29. Размножение – универсальное свойство живого, обеспечивающее непрерывность в ряду поколений. Эволюция и формы размножений.
- •30. Гаметогенез. Мейоз: цитологическая и цитогенетическая характеристика.
- •32. Способы регенерации органов и тканей. Репаративная регенерация патологически изменённой печени. Способы стимуляции (хирургические, физические, биологические).
- •Классификация регенерации по масштабу процессов:
- •33. Проблема трансплантации органов и тканей. Виды трансплантации. Трансплантация жизненно важных органов. Тканевая несовместимость и пути её преодоления. Главный комплекс гистосовместимости.
- •35. Терапевтическое клонирование. Стволовые клетки.
- •37. Антропогенез. Качественные отличия человека от животных. Биосоциальная природа человека. Характеристика основных этапов антропогенеза: протантропов, архантропов, палеоантропов, неоантропов.
- •38. Понятие о расах и видовое единство человечества. Современная классификация и распространение человеческих рас. Роль факторов географической среды.
- •40. Учение о биосфере. Концепции биосферы. Границы, структура и функции. Типы круговорота веществ. Значение трудов в. И. Вернадского. Эволюция биосферы.
- •41. Человек и биосфера. Ноосфера – высший этап эволюции биосферы. Необходимые условия для становления и существования ноосферы. Медико-генетические аспекты ноосферы.
- •42. Определение науки экологии. Среда как экологическое понятие. Факторы среды. Экосистема, биогеоценоз, антропобиоценоз.
- •43. Типы биотических взаимоотношений в сообществах. Экологические стратегии выживания. К-стратеги и r-стратеги.
- •46. Адаптация человека к условиям жизнедеятельности и к среде обитания. Адаптивные типы человека. Хронология адаптивных типов человека (Алексеева т.И.).
- •История становления эволюционных идей. Додарвинский период (к. Линней, ж.Б.Ламарк, ж.Кювье, э.Ж.Сент-Илер). Сущность представления ч. Дарвина о механизмах органической эволюции.
- •Становление эволюционной теории. Сущность представлений ч. Дарвина и а.Р. Уоллеса о механизмах органической эволюции. Сравнительный анализ ламаркизма и дарвинизма.
- •52. Микроэволюция. Пути и механизмы видообразования. Способы видообразования.
- •53. Понятие о биологическом виде. Критерии вида. Популяционная структура вида. Генетическая структура популяции. Правило Харди-Вайнберга.
- •54. Элементарные эволюционные факторы: мутационный процесс, популяционные волны, изоляция, дрейф генов, естественный отбор. Взаимодействие эволюционных факторов.
- •55. Естественный отбор. Формы естественного отбора. Специфическое действие естественного отбора в человеческих популяциях.
- •56. Закономерности макроэволюции. Пути биологической эволюции по Северцову. Типы, формы, правила эволюции групп. Темпы эволюции групп.
- •57. Общая схема филогенетического цикла. Принципы эволюции органов. Морфофункциональные преобразования органов.
- •Сводная схема филогенетического цикла (составил а.С.Раутиан)
- •58. Филогенез. Методы изучения эволюционного процесса. Филэмбриогенезы (анаболии, девиации, архаллаксисы)
- •2. Эмбриологические методы:
- •4. Биогеографические методы:
- •5. Методы систематики:
- •60. Сравнительный обзор сердечно-сосудистой системы позвоночных животных. Пороки развития сердца и магистральных сосудов у человека.
- •61. Филогенез хордовых (в виде схемы изобразите эволюцию позвоночных животных). Сравнительный обзор скелета и покровов тела.
- •62. Сравнительный обзор нервной системы позвоночных животных. Типы головного мозга позвоночных. Онтофилогенетически обусловленные пороки развития нервной системы человека.
- •63. Филогенез выделительной системы позвоночных животных. Сравнительная характеристика типов нефронов почек Хордовых.
- •67. Популяционный уровень взаимодействия паразитов и хозяев. Паразитоценоз. Жизненные циклы паразитов и хозяев на примере био- и гео-протистов и био- и геогельминтов.
- •68. Принцип взаимодействия паразита и хозяина на уровне особей. Влияние паразита на хозяина и ответная реакция хозяина. Пути морфологической адаптации паразитов.
- •69. Межвидовые биотические связи в биоценозах. Паразитизм как биологический феномен. Происхождение паразитизма. Распространение паразитических форм в животном мире.
- •70. Понятие об инвазии и инвазионной стадии. Реинвазия. Пути проникновения паразитов и способы передачи возбудителей.
- •71. Жизненные циклы паразитов. Чередование поколений и феномен смены хозяев. Промежуточные, основные, резервуарные, дополнительные хозяева. Пути расселения паразитов: биогельминты и геогельминты.
- •74. Тип Простейшие. Классификация, характерные черты организации. Циклы развития. Типы ассимиляции и способы питания простейших. Формы бесполого и полового размножения.
- •75. Балантидий. Систематическое положение, морфология, цикл развития, пути заражения. Обоснование методов лабораторной диагностики, профилактика.
- •76. Дизентерийная амёба. Систематическое положение, морфология, цикл развития. Обоснование методов лабораторной диагностики, профилактика.
- •77. Малярийный плазмодий. Систематическое положение, виды плазмодиев, цикл развития в организме комара и человека. Пути заражения, методы лабораторной диагностики, профилактика.
- •79. Систематика, морфология и биология возбудителей лейшманиозов. Обоснование методов лабораторной диагностики и мер профилактики.
- •80. Трихомонады, трипаносомы, лямблии. Систематическое положение, морфология, цикл развития, пути заражения. Обоснование методов лабораторной диагностики.
- •81. Методы гельминтоовоскопии. Принципы дегельминтизации и девастации. Организация борьбы с био- и геогельминтами.
- •82. Тип Круглые черви. Характерные черты организации. Понятие о био- и геогельминтах. Очаг геогельминта. Условия возникновения истинного очага. Ложные очаги.
- •83. Анкилостомиды. Систематическое положение, морфология, циклы развития, обоснование лабораторной диагностики. Пути заражения анкилостомидозами. Профилактика. Распространение очагов анкилостомидозов.
- •84. Ришта. Систематическое положение, цикл развития, диагностика, профилактика. Работы л. М. Исаева по ликвидации дракункулеза в Средней Азии.
- •85. Аскарида. Систематическое положение, морфология, цикл развития, пути заражения. Обоснование методов лабораторной диагностики; профилактика. Очаги аскаридозов.
- •86. Власоглав. Систематическое положение, морфология. Особенности цикла развития по сравнению с аскаридой. Обоснование методов диагностики, профилактика.
- •87. Острица. Систематическое положение, морфология, цикл развития, пути заражения. Обоснование методов диагностики, профилактика. Обоснование безмедикаментозного лечения энтеробиоза.
- •88. Угрица кишечная. Систематическое положение, морфология, цикл развития (прямой, непрямой, внутрикишечный), инвазионная стадия. Обоснование методов лабораторной диагностики, профилактика.
- •89. Трихинелла. Систематическое положение, морфология, цикл развития. Пути заражения; обоснование методов лабораторной диагностики, профилактика. Очаги трихинеллёза (синантропные, природноочаговые).
- •90. Лёгочный сосальщик. Систематическое положение, морфология, цикл развития, пути заражения, инвазионная стадия для окончательного хозяина. Обоснование методов лабораторной диагностики, профилактика.
- •Шистосомы. Систематическое положение, морфология, цикл развития. Обоснование методов лабораторной диагностики, профилактика.
- •Печёночный сосальщик. Систематическое положение, циклы развития, пути заражения. Обоснование методов лабораторной диагностики, профилактика. Понятие о транзитных яйцах.
- •Ланцетовидный сосальщик. Систематическое положение, циклы развития, пути заражения, инвазионная стадия для окончательного хозяина. Обоснование методов лабораторной диагностики и профилактики.
- •Бычий цепень. Систематическое положение, морфология, цикл развития. Пути заражения, методы лабораторной диагностики и профилактика тениаринхоза.
- •Лентец широкий. Систематическое положение, морфология, цикл развития, пути заражения дифиллоботриозом. Обоснование методов лабораторной диагностики дифиллоботриоза, профилактика.
- •Карликовый цепень. Систематическое положение, морфология, цикл развития, пути заражения, диагностика, профилактика.
- •100. Тип Членистоногие. Систематика. Характерные черты организации. Медицинское значение. Медицинское значение класса ракообразных.
- •102. Класс насекомые. Систематика. Характерные черты организации. Идиоадаптации насекомых. Медицинское значение.
- •Вши, блохи. Систематическое положение, морфология, развитие, эпидемиологическое значение, меры борьбы.
- •Комары и москиты. Систематическое положение, морфология, развитие, медицинское значение, меры борьбы.
17. Биосинтез белка. Этапы трансляции у эукариот. Сравнительный анализ биосинтеза белка у про- и эукариот.
Биосинтез белка:
Биосинтез белка имеет важнейшее научное и клиническое значение. Отличие одного индивидуального белка от другого определяется природой и последовательностью чередования аминокислот, входящих в его состав.
Носителем наследственной информации являются молекулы ДНК (гены), в которых закодированы генетические особенности организма, в том числе состав и структура синтезируемых белков. Первичная структура ДНК представляет собой последовательность мононуклеотидов, каждые три из которых носят название триплет и кодируют определенную аминокислоту. Таким образом, последовательность аминокислот любого синтезируемого белка контролируется последовательностью триплетов ДНК. Этот процесс составляет сущность биосинтеза белка.
Процесс биосинтеза белка состоит из трех этапов.
1. синтез информационной РНК (и-РНК) – транскрипция и перенос её к месту синтеза белка – к рибосомам - синтез и-РНК происходит в ядре, молекула ДНК, состоящая из двух цепочек раскручивается и на одной цепи ДНК строится и-РНК по принципу комплементарности, т.е. каждому азотистому основанию ДНК соответствует азотистое основание РНК. Таким образом, молекула и-РНК в точности повторяет последовательность ДНК, а значит, служит переносчиком наследственной генетической информации, т.е. матрицей.
2. активация аминокислот – присоединение их к транспортной РНК (т-РНК) и перенос их к рибосомам - этап начинается с активации аминокислот при участии ферментов и АТФ с сохранением комплексов аминоациладенилатов. Для каждой аминокислоты есть своя т-РНК, к которой аминокислота и присоединяется. Этот комплекс движется к рибосомам.
Особенность т-РНК заключается в наличии в ней антикодона – триплета строго определенного состава для каждой аминокислоты (пр. фенилаланин – это ААА, метионин УАЦ, аланин – ЦГГ).
3. собственно биосинтез (трансляция) - в молекуле и-РНК имеются определенные триплеты, которые называются кодонами и которые комплементарны антикодонам и-РНК. По мере передвижения и-РНК по рибосоме происходит их присоединение к комплементарным кодонам и-РНК, а соединенные с т-РНК аминокислоты соответственно взаимодействуют между собой в той последовательности, которая строго зафиксирована порядком соединения кодона и антикодона путем образования полипептидной цепи, специфичной для данного белка (первичная структура, которая в дальнейшем приобретает вторичную и третичную структуру).
Этапы трансляции у эукариот:
Трансляция (как и все матричные процессы) включает три стадии: инициацию (начало), элонгацию (продолжение) и терминацию (окончание).
1. ИНИЦИАЦИЯ. Сущность инициации заключается в образовании пептидной связи между двумя первыми аминокислотами полипептида.Первоначально образуется инициирующий комплекс, в состав которого входят: малая субъединица рибосомы, специфические белки (факторы инициации) и специальная инициаторная метиониновая тРНК с аминокислотой метионином – Мет–тРНКМет. Инициирующий комплекс узнает начало мРНК, присоединяется к ней и скользит до точки инициации (начала) биосинтеза белка: в большинстве случаев это стартовый кодон АУГ. Между стартовым кодоном мРНК и антикодоном метиониновой тРНК происходит кодонзависимое связывание с образованием водородных связей. Затем происходит присоединение большой субъединицы рибосомы.
При объединении субъединиц образуется целостная рибосома, которая несет два активных центра (сайта): А–участок (аминоацильный, который служит для присоединения аминоацил-тРНК) и Р – участок (пептидилтрансферазный, который служит для образования пептидной связи между аминокислотами).
Первоначально Мет–тРНКМет находится на А–участке, но затем перемещается на Р–участок. На освободившийся А–участок поступает аминоацил-тРНК с антикодоном, который комплементарен кодону мРНК, следующему за кодоном АУГ. В нашем примере это Гли–тРНКГли с антикодоном ЦЦГ, который комплементарен кодону ГГЦ. В результате кодонзависимого связывания между кодоном мРНК и антикодоном аминоацил-тРНК образуются водородные связи. Таким образом, на рибосоме рядом оказываются две аминокислоты, между которыми образуется пептидная связь. Ковалентная связь между первой аминокислотой (метионином) и её тРНК разрывается.
2. ЭЛОНГАЦИЯ. Сущность элонгации заключается в присоединении последующих аминокислот, то есть в наращивании полипептидной цепи. Рабочий цикл рибосомы в процессе элонгации состоит из трех шагов: кодонзависимого связывания мРНК и аминоацил-тРНК на А–участке, образования пептидной связи между аминокислотой и растущей полипептидной цепью и транслокации с освобождением А–участка.
На освободившийся А–участок поступает аминоацил-тРНК с антикодоном, соответствующим следующему кодону мРНК (в нашем примере это Тир–тРНКТир с антикодоном АУА, который комплементарен кодону УАУ).
На рибосоме рядом оказываются две аминокислоты, между которыми образуется пептидная связь. Связь между предыдущей аминокислотой и её тРНК (в нашем примере между глицином и тРНКГли) разрывается.
Затем рибосома смещается еще на один триплет, и в результате транслокации тРНК, которая была на Р–участке (в нашем примере тРНКГли), оказывается за пределами рибосомы и отщепляется от мРНК. А–участок освобождается, и рабочий цикл рибосомы начинается сначала.
3. ТЕРМИНАЦИЯ заключается в окончании синтеза полипептидной цепи.
В конце концов, рибосома достигает такого кодона мРНК, которому не соответствует ни одна тРНК (и ни одна аминокислота). Существует три таких нонсенс–кодона: УАА («охра»), УАГ («янтарь»), УГА («опал»). На этих кодонах мРНК рабочий цикл рибосомы прерывается, и наращивание полипептида прекращается. Рибосома под воздействием определенных белков вновь разделяется на субъединицы.
Сравнительный анализ биосинтеза белка у про- и эукариот:
Биосинтез белка у прокариот:
1. Транскрипция: перенос информации с ДНК на иРНК (образование пре-иРНК);
2. Трансляция: перевод иРНК в последовательность белка. Состоит з трех этапов:
инициация (образование комплекса зрелой иРНК, рибосомы и тРНК)
элонгация (образование первичной структуры белка)
терминация (окончание трансляции)
3. Посттрансляция (конформация): сворачивание белка с образованием уровней: вторичного, третичного, четвертичного.
!! Все этапы биосинтеза у прокариот проходят в цитоплазме.
Биосинтез белка у эукариот:
1. Транскрипция: перенос информации с ДНК на иРНК (образование пре-иРНК);
2. Посттранскрипция (процессинг): созревание иРНК. Происходит сплайсинг; на 5’ конце образуется КЭП, который стабилизирует 5’ иРНК и обеспечивает узнавание иРНК и малой субъединицы рибосомы; на 3’ конце образуется поли-А последовательность, которая стабилизирует 3’ иРНК и транспортирует иРНК к рибосоме (образование зрелой и-РНК);
3. Трансляция: перевод иРНК в последовательность белка. Состоит з трех этапов:
инициация (образование комплекса зрелой иРНК, рибосомы и тРНК)
элонгация (образование первичной структуры белка)
терминация (окончание трансляции)
4. Посттрансляция (конформация): сворачивание белка с образованием уровней: вторичного, третичного, четвертичного.
!! Транскрипция и процессинг у эукариот проходят в ядре, а трансляция и конформация – в цитоплазме.
18. Генетическая инженерия. Задачи, методы, перспективы. Пути искусственного синтеза гена. Получение рекомбинативных молекул. Теоретические предпосылки генной инженерии. Преимущества генной инженерии по сравнению с селекцией. Значение генной инженерии для фундаментальной и прикладной науки.
Генетическая инженерия:
Генная инженерия – это отрасль молекулярной биологии и генетики, целью которой является получение с помощью лабораторных приемов организмов с новыми, не встречающимися в природе, комбинациями генов. В основе генной инженерии лежит возможность целенаправленного манипулирования с фрагментами нуклеиновых кислот. Эти эксперименты стали возможными благодаря установлению универсальности генетического кода и успехам генетической энзимологии, которая предоставила набор ферментов, позволяющих получать в изолированном виде отдельные гены или фрагменты нуклеиновой кислоты, осуществлять in vitro синтез фрагментов нуклеиновых кислот и объединять их информацию.
Задачи, методы, перспективы:
Цель генной инженерии – конструирование генетических структур по намеченному плану (создание организмов с новой генетической программой путем переноса генетической информации из одного организма в другой).
ЗАДАЧИ:
1.Создание рекомбинантных ДНК, пригодных для переноса в другие клетки
2. Разработка методов введения рекомбинантной ДНК в клетку
3. Создание условий для нормальной экспрессии генов, введенных в клетку
МЕТОДЫ: генной инженерии основаны на получении фрагментов исходной ДНК и их модификации.
1. Получение генетического материала
2. В ДНК, способную реплицироваться автономно (вектор) ферментативно встраивают фрагменты ДНК из любого источника
3. Получаемые при этом молекулы гибридной ДНК вводят в E.coli
4. в E.coli рекомбинантные молекулы ДНК реплицируются, размножая в своем составе клонируемый фрагмент ДНК
5. Полученные гибридные ДНК подвергают дальнейшим перестройкам и затем вводят в реципиентные клетки, изменяя их генотип и фенотип
ПЕРСПЕКТИВЫ:
Получение ДНК зондов для исследования структуры и функций и экспрессии генов
Дальнейшее развитие «обратной генетики»: зная белок, выделяют и мядифицируют, кодирующий его ген, и получают белок с новыми свойствами
Развитие и совершенствование генной терапии: методологии лечения наследственных болезней
Получение ГМО, трансгенных растений и животных с полезными для человека свойствами
Пути искусственного синтеза гена:
Известны 2 пути искусственного синтеза генов:
химический
ферментативный
Для химического синтеза необходимо иметь полностью расшифрованную последовательность нуклеотидов. Последовательность нуклеотидов в ДНК определяют по и-РНК.
Впервые в 1970г. в США индийский ученый Корана осуществил искусственный синтез гена. Но этот ген не работал in vitro (в пробирке). Причиной являлся синтез только структурной части гена (в нем не было регуляторной части).
В 1976г. был синтезирован ген, состоящий не только из структурного участка, но и регуляторных частей. Этот искусственный ген был введен в бактерию и функционировал в ней как природный. Химическим путем можно синтезировать небольшие по размеру гены прокариот. Синтез генов эукариот, состоящих из 1000 и более нуклеотидов путем химического синтеза создавать не удается. Кроме этого это метод очень трудоемкий и практически не применяется на практике.
Наиболее успешным оказался ферментативный синтез. Это метод поколебал центральную догму молекулярной генетики, утверждающую, что считка информации происходит в направлении ДНК > и-РНК > белок.
Оказалось, что РНК может быть предшественником ДНК. Подобное наблюдается у онкогенных РНК содержащих вирусов. С РНК вируса, попавшего в клетку, синтезируется ДНК-копия РНК с помощью фермента - обратная транскриптаза. Сам процесс называется обратная транскрипция.
Но гены, синтезированные с помощью ревертаз (обратная транскриптаза) не имеют регуляторной части, а это препятствует функционированию искусственных генов в животных клетках, что ограничивает их использование. Кроме того, и-РНК в клетках очень немного, и она не стойкая.
В настоящее время рекомбинантные молекулы ДНК чаще всего получают путем гибридизации инвитро фрагментов ДНК вирусного и бактериального происхождения, и в меньшей степени эукариотического происхождения.
Получение рекомбинативных молекул:
Для получения рекомбинантной ДНК плазмиды выделяют из Е. coli и удаляют из них часть кольцевой молекулы ДНК. Для этого применяют рестриктазы. Комплементарные цепи молекулы ДНК разрезаются в разных местах, в результате чего образуются «липкие» концы — неспаренные участки цепей, способные присоединять комплементарные им полинуклеотиды. На фрагменте ДНК, выбранном для пересадки, тоже создают «липкие» концы, используя ту же рест-риктазу, и, следовательно, на фрагменте ДНК образуются «липкие» концы, комплементарные «липким» концам рестриктированной плазмиды. Если теперь смешать фрагмент ДНК (ген) и плазмиду, то они соединятся «липкими» концами. Затем с помощью фермента лигазы образуют фосфодиэфирную связь между концевыми нуклеотидами обеих молекул, и вновь получают кольцевую молекулу ДНК, но теперь она вместе с плазмидной ДНК содержит ген, выбранный для пересадки. Это и есть рекомбинантная ДНК, т. е. ДНК, содержащая новую комбинацию последовательностей (или генов), такую, какой прежде в природе не было.
Теоретические предпосылки генной инженерии:
1. К началу развития науки генной инженерии был установлен механизм информационного взаимодействия между основными макромолекулами, участвующими в передаче наследственной информации от одного организма другому. Это – репликация, матричный синтез ДНК, при котором цепочка ДНК расплетается, и на каждой образуются новые, комплиментарные. По такому же механизму на ДНК синтезируются комплиментарные ей РНК – транскрипция. На матрице РНК на рибосомах осуществляется синтез белка, структура которого соответствует структуре мРНК – трансляция.
2. Следующий шаг на пути к генной инженерии – открытие внехромосомной самореплицирующейся ДНК или мини-хромосом, которые получили название плазмиды.
3. Выделение и получение ферментов рестриктаз, которые специфически расщепляют ДНК, позволило манипулировать с фрагментами ДНК и привело к возможности изолировать индивидуальный ген. Приемы генной инженерии позволяют проводить рекомбинацию
Преимущества генной инженерии по сравнению с селекцией:
Значительное ускорение создания сорта (1- 3 года против 10 и более лет).
Избавление от значительного количества «генетического балласта».
Создание растений с заданными признаками. Традиционная селекция отбирает растения, которые нас устраивают, биотехнология создает растения, которые нам нужны.
Большая возможность контроля целевого гена за счет управления его экспрессией в нужных органах, тканях и в нужное время.
Значение генной инженерии для фундаментальной и прикладной науки:
Производство лекарственных препаратов
Производство генно-инженерных вакцин
Генная терапия наследственных заболеваний
Трансгенные растения, животные