CHAPTER 51 Clinical Use of Antimicrobial Agents |
907 |
TABLE 51 1 Empiric antimicrobial therapy based on microbiologic etiology.
Suspected or Proven Disease or Pathogen |
Drugs of First Choice |
Alternative Drugs |
|
|
|
Gram-negative cocci (aerobic) |
|
|
Moraxella (Branhamella) catarrhalis |
TMP-SMZ,1 cephalosporin (second- |
Quinolone,3 macrolide4 |
|
or third-generation)2 |
|
Neisseria gonorrhoeae |
Ceftriaxone, cefixime |
Spectinomycin, azithromycin |
Neisseria meningitidis |
Penicillin G |
Chloramphenicol, ceftriaxone, cefotaxime |
Gram-negative rods (aerobic) |
|
|
E coli, Klebsiella, Proteus |
Cephalosporin (firstor second- |
Quinolone,3 aminoglycoside5 |
|
generation),2 TMP-SMZ1 |
|
Enterobacter, Citrobacter, Serratia |
TMP-SMZ,1 quinolone,3 carbapenem6 |
Antipseudomonal penicillin,7 aminoglycoside,5 cefepime |
Shigella |
Quinolone3 |
TMP-SMZ,1 ampicillin, azithromycin, ceftriaxone |
Salmonella |
Quinolone,3 ceftriaxone |
Chloramphenicol, ampicillin, TMP-SMZ1 |
Campylobacter jejuni |
Erythromycin or azithromycin |
Tetracycline, quinolone3 |
Brucella species |
Doxycycline + rifampin or |
Chloramphenicol + aminoglycoside5 or TMP-SMZ1 |
|
aminoglycoside5 |
|
Helicobacter pylori |
Proton pump inhibitor + amoxicillin |
Bismuth + metronidazole + tetracycline + proton pump |
|
+ clarithromycin |
inhibitor |
Vibrio species |
Tetracycline |
Quinolone,3 TMP-SMZ1 |
Pseudomonas aeruginosa |
Antipseudomonal penicillin + |
Antipseudomonal penicillin ± quinolone,3 cefepime, |
|
aminoglycoside5 |
ceftazidime, antipseudomonal carbapenem,6 or aztreonam ± |
|
|
aminoglycoside5 |
Burkholderia cepacia (formerly |
TMP-SMZ1 |
Ceftazidime, chloramphenicol |
Pseudomonas cepacia) |
|
|
Stenotrophomonas maltophilia (formerly |
TMP-SMZ1 |
Minocycline, ticarcillin-clavulanate, tigecycline, ceftazidime, |
Xanthomonas maltophilia) |
|
quinolone3 |
Legionella species |
Azithromycin or quinolone3 |
Clarithromycin, erythromycin |
Gram-positive cocci (aerobic) |
|
|
Streptococcus pneumoniae |
Penicillin8 |
Doxycycline, ceftriaxone, antipneumococcal quinolone,3 |
|
|
macrolide,4 linezolid |
Streptococcus pyogenes (group A) |
Penicillin, clindamycin |
Erythromycin, cephalosporin (first-generation)2 |
Streptococcus agalactiae (group B) |
Penicillin (± aminoglycoside5) |
Vancomycin |
Viridans streptococci |
Penicillin |
Cephalosporin (firstor third-generation),2 vancomycin |
Staphylococcus aureus |
|
|
β-Lactamase negative |
Penicillin |
Cephalosporin (first-generation),2 vancomycin |
β-Lactamase positive |
Penicillinase-resistant penicillin9 |
As above |
Methicillin-resistant |
Vancomycin |
TMP-SMZ,1 minocycline, linezolid, daptomycin, tigecycline |
Enterococcus species10 |
Penicillin + aminoglycoside5 |
Vancomycin + aminoglycoside5 |
Gram-positive rods (aerobic) |
|
|
Bacillus species (non-anthracis) |
Vancomycin |
Imipenem, quinolone,3 clindamycin |
Listeria species |
Ampicillin (± aminoglycoside5) |
TMP-SMZ1 |
Nocardia species |
Sulfadiazine, TMP-SMZ1 |
Minocycline, imipenem, amikacin, linezolid |
Anaerobic bacteria |
|
|
Gram-positive (clostridia, Peptococcus, |
Penicillin, clindamycin |
Vancomycin, carbapenem,6 chloramphenicol |
Actinomyces, Peptostreptococcus) |
|
|
Clostridium difficile |
Metronidazole |
Vancomycin, bacitracin |
Bacteroides fragilis |
Metronidazole |
Chloramphenicol, carbapenem,6 β-lactam—β-lactamase- |
|
|
inhibitor combinations, clindamycin |
Fusobacterium, Prevotella, |
Metronidazole, clindamycin, |
As for B fragilis |
Porphyromonas |
penicillin |
|
|
|
(Continued) |
908 SECTION VIII Chemotherapeutic Drugs
TABLE 51 1 Empiric antimicrobial therapy based on microbiologic etiology. (Continued)
Suspected or Proven Disease or Pathogen |
Drugs of First Choice |
Alternative Drugs |
|
|
|
Mycobacteria |
|
|
Mycobacterium tuberculosis |
Isoniazid + rifampin + ethambutol + |
Streptomycin, moxifloxacin, amikacin, ethionamide, |
|
pyrazinamide |
cycloserine, PAS, linezolid |
Mycobacterium leprae |
|
|
Multibacillary |
Dapsone + rifampin + clofazimine |
|
Paucibacillary |
Dapsone + rifampin |
|
Mycoplasma pneumoniae |
Tetracycline, erythromycin |
Azithromycin, clarithromycin, quinolone3 |
Chlamydia |
|
|
C trachomatis |
Tetracycline, azithromycin |
Clindamycin, ofloxacin |
C pneumoniae |
Tetracycline, erythromycin |
Clarithromycin, azithromycin |
C psittaci |
Tetracycline |
Chloramphenicol |
Spirochetes |
|
|
Borrelia recurrentis |
Doxycycline |
Erythromycin, chloramphenicol, penicillin |
Borrelia burgdorferi |
|
|
Early |
Doxycycline, amoxicillin |
Cefuroxime axetil, penicillin |
Late |
Ceftriaxone |
|
Leptospira species |
Penicillin |
Tetracycline |
Treponema species |
Penicillin |
Tetracycline, azithromycin, ceftriaxone |
Fungi |
|
|
Aspergillus species |
Voriconazole |
Amphotericin B, itraconazole, caspofungin, isavuconazole |
Blastomyces species |
Amphotericin B |
Itraconazole, fluconazole |
Candida species |
Amphotericin B, echinocandin11 |
Fluconazole, itraconazole, voriconazole |
Cryptococcus neoformans |
Amphotericin B ± flucytosine (5-FC) |
Fluconazole, voriconazole |
Coccidioides immitis |
Amphotericin B |
Fluconazole, itraconazole, voriconazole, posaconazole |
Histoplasma capsulatum |
Amphotericin B |
Itraconazole |
Mucoraceae (Rhizopus, Absidia) |
Amphotericin B |
Posaconazole, isavuconazole |
Sporothrix schenckii |
Amphotericin B |
Itraconazole |
|
|
|
1Trimethoprim-sulfamethoxazole (TMP-SMZ) is a mixture of one part trimethoprim plus ve parts sulfamethoxazole.
2First-generation cephalosporins: cefazolin for parenteral administration; cefadroxil or cephalexin for oral administration. Second-generation cephalosporins: cefuroxime for parenteral administration; cefaclor, cefuroxime axetil, cefprozil for oral administration. Third-generation cephalosporins: ceftazidime, cefotaxime, ceftriaxone for parenteral administration; ce xime, cefpodoxime, ceftibuten, cefdinir, cefditoren for oral administration. Fourth-generation cephalosporin: cefepime for parenteral administration. Cephamycins: cefoxitin and cefotetan for parenteral administration.
3Quinolones: cipro oxacin, gemi oxacin, levo oxacin, moxi oxacin, nor oxacin, o oxacin. Nor oxacin is not e ective for the treatment of systemic infections. Gemi oxacin, levo oxacin, and moxi oxacin have excellent activity against pneumococci. Cipro oxacin and levo oxacin have good activity against Pseudomonas aeruginosa.
4Macrolides: azithromycin, clarithromycin, dirithromycin, erythromycin.
5Generally, streptomycin and gentamicin are used to treat infections with Gram-positive organisms, whereas gentamicin, tobramycin, and amikacin are used to treat infections with Gram-negatives.
6Carbapenems: doripenem, ertapenem, imipenem, meropenem. Ertapenem lacks activity against enterococci, Acinetobacter, and P aeruginosa. 7Antipseudomonal penicillin: piperacillin, piperacillin/tazobactam, ticarcillin/clavulanic acid.
8See footnote 3 in Table 51–2 for guidelines on the treatment of penicillin-resistant pneumococcal meningitis. 9Parenteral nafcillin or oxacillin; oral dicloxacillin.
10There is no regimen that is reliably bactericidal for vancomycin-resistant enterococcus for which there is extensive clinical experience; daptomycin has bactericidal activity in vitro. Regimens that have been reported to be e cacious include nitrofurantoin (for urinary tract infection); potential regimens for bacteremia include daptomycin, linezolid, and dalfopristin/quinupristin.
11Echinocandins: anidulafungin, caspofungin, micafungin.
CHAPTER 51 Clinical Use of Antimicrobial Agents |
909 |
TABLE 51 2 Empiric antimicrobial therapy based on site of infection.
Presumed Site of Infection |
Common Pathogens |
Drugs of First Choice |
Alternative Drugs |
|
|
|
|
Bacterial endocarditis |
|
|
|
Acute |
Staphylococcus aureus |
Vancomycin + ceftriaxone |
Penicillinase-resistant penicillin1 + |
|
|
|
gentamicin |
Subacute |
Viridans streptococci, enterococci |
Penicillin + gentamicin |
Vancomycin + gentamicin |
Septic arthritis |
|
|
|
Child |
Haemophilus influenzae, S aureus, |
Vancomycin + ceftriaxone |
Vancomycin + ampicillin-sulbactam or |
|
β-hemolytic streptococci |
|
ertapenem |
Adult |
S aureus, Enterobacteriaceae, |
Vancomycin + ceftriaxone |
Vancomycin + ertapenem, or quinolone |
|
Neisseria gonorrhoeae |
|
|
Acute otitis media, |
H influenzae, Streptococcus |
Amoxicillin |
Amoxicillin-clavulanate, cefuroxime |
sinusitis |
pneumoniae, Moraxella catarrhalis |
|
axetil, TMP-SMZ |
Cellulitis |
S aureus, group A streptococcus |
Penicillinase-resistant penicillin, |
Vancomycin, clindamycin, linezolid, |
|
|
cephalosporin (first-generation)2 |
daptomycin |
Meningitis |
|
|
|
Neonate |
Group B streptococcus, Escherichia |
Ampicillin + cephalosporin |
Ampicillin + aminoglycoside, |
|
coli, Listeria |
(third-generation) |
chloramphenicol, meropenem |
Child |
H influenzae, pneumococcus, |
Ceftriaxone or cefotaxime ± |
Chloramphenicol, meropenem |
|
meningococcus |
vancomycin3 |
|
Adult |
Pneumococcus, meningococcus |
Ceftriaxone, cefotaxime |
Vancomycin + ceftriaxone or cefotaxime3 |
Peritonitis due to |
Coliforms, Bacteroides fragilis |
Metronidazole + cephalosporin |
Carbapenem, tigecycline |
ruptured viscus |
|
(third-generation), piperacillin/ |
|
|
|
tazobactam |
|
Pneumonia |
|
|
|
Neonate |
As in neonatal meningitis |
|
|
Child |
Pneumococcus, S aureus, |
Ceftriaxone, cefuroxime, |
Ampicillin-sulbactam |
|
H influenzae |
cefotaxime |
|
Adult |
Pneumococcus, Mycoplasma, |
Outpatient: Macrolide,4 |
Outpatient: Quinolone |
(community-acquired) |
Legionella, H influenzae, S aureus, |
amoxicillin, tetracycline |
|
|
Chlamydophila pneumonia, |
|
|
|
coliforms |
|
|
Inpatient: Macrolide4 + cefotaxime, ceftriaxone, ertapenem, or ampicillin
Inpatient: Doxycycline + cefotaxime, ceftriaxone, ertapenem, or ampicillin; respiratory quinolone5
Septicemia6 |
Any |
Vancomycin + cephalosporin (third-generation) or piperacillin/tazobactam or |
|
|
imipenem or meropenem |
Septicemia with |
Any |
Antipseudomonal penicillin + aminoglycoside; ceftazidime; cefepime; |
granulocytopenia |
|
imipenem or meropenem; consider addition of systemic antifungal therapy if |
|
|
fever persists beyond 5 days of empiric therapy |
|
|
|
1See footnote 9, Table 51–1.
2See footnote 2, Table 51–1.
3When meningitis with penicillin-resistant pneumococcus is suspected, empiric therapy with this regimen is recommended. 4Erythromycin, clarithromycin, or azithromycin (an azalide) may be used.
5Quinolones used to treat pneumonococcal infections include levo oxacin, moxi oxacin, and gemi oxacin. 6Adjunctive immunomodulatory drugs such as drotrecogin-alfa can also be considered for patients with severe sepsis.
determine the cause of failure. Errors in susceptibility testing are rare, but the original results should be confirmed by repeat testing. Drug dosing and absorption should be scrutinized and tested directly using serum measurements, pill counting, or directly observed therapy.
The clinical data should be reviewed to determine whether the patient’s immune function is adequate and, if not, what
can be done to maximize it. For example, are adequate numbers of granulocytes present and is undiagnosed immunodeficiency, malignancy, or malnutrition present? The presence of abscesses or foreign bodies should also be considered. Finally, culture and susceptibility testing should be repeated to determine whether superinfection has occurred with another organism or whether the original pathogen has developed drug resistance.
with significant PAEs against susceptible Gram-negative bacilli are limited to carbapenems and agents that inhibit protein or DNA synthesis.
In vivo PAEs are usually much longer than in vitro PAEs. This is thought to be due to postantibiotic leukocyte enhancement (PALE) and exposure of bacteria to subinhibitory antibiotic concentrations. The efficacy of once-daily dosing regimens is in part due to the PAE. Aminoglycosides and quinolones possess concentration-dependent PAEs; thus, high doses of aminoglycosides given once daily result in enhanced bactericidal activity and extended PAEs. This combination of pharmacodynamic effects allows aminoglycoside serum concentrations that are below the MICs of target organisms to remain effective for extended periods of time.
PHARMACOKINETIC CONSIDERATIONS
Route of Administration
Many antimicrobial agents have similar pharmacokinetic properties when given orally or parenterally (ie, tetracyclines, trime- thoprim-sulfamethoxazole, quinolones, metronidazole, clindamycin, rifampin, linezolid, and fluconazole). In most cases, oral therapy with these drugs is equally effective, is less costly, and results in fewer complications than parenteral therapy.
The intravenous route is preferred in the following situations:
(1) for critically ill patients; (2) for patients with bacterial meningitis or endocarditis; (3) for patients with nausea, vomiting, gastrectomy, ileus, or diseases that may impair oral absorption; and
(4) when giving antimicrobials that are poorly absorbed following oral administration.
Conditions That Alter Antimicrobial Pharmacokinetics
Various diseases and physiologic states alter the pharmacokinetics of antimicrobial agents. Impairment of renal or hepatic function
CHAPTER 51 Clinical Use of Antimicrobial Agents |
911 |
may result in decreased elimination. Table 51–5 lists drugs that require dosage reduction in patients with renal or hepatic insufficiency. Failure to reduce antimicrobial agent dosage in such patients may cause toxic effects. Conversely, patients with burns, cystic fibrosis, or trauma may have increased dosage requirements for selected agents. The pharmacokinetics of antimicrobials is also altered in the elderly (see Chapter 60), in neonates (see Chapter 59), and in pregnancy.
Drug Concentrations in Body Fluids
Most antimicrobial agents are well distributed to most body tissues and fluids. Penetration into the cerebrospinal fluid is an exception. Most do not penetrate uninflamed meninges to an appreciable extent. In the presence of meningitis, however, the cerebrospinal fluid concentrations of many antimicrobials increase (Table 51–6).
Monitoring Serum Concentrations of Antimicrobial Agents
For most antimicrobial agents, the relation between dose and therapeutic outcome is well established, and serum concentration monitoring is unnecessary for these drugs. To justify routine serum concentration monitoring, it should be established (1) that a direct relationship exists between drug concentrations and efficacy or toxicity; (2) that substantial interpatient variability exists in serum concentrations on standard doses; (3) that a small difference exists between therapeutic and toxic serum concentrations; (4) that the clinical efficacy or toxicity of the drug is delayed or difficult to measure; and (5) that an accurate assay is available.
In clinical practice, serum concentration monitoring is routinely performed on patients receiving aminoglycosides or vancomycin. Flucytosine serum concentration monitoring has been shown to reduce toxicity when doses are adjusted to maintain peak concentrations below 100 mcg/mL.
TABLE 51 5 Antimicrobial agents that require dosage adjustment or are contraindicated in patients with renal or hepatic impairment.
|
Contraindicated in |
Dosage Adjustment Needed in |
Dosage Adjustment Needed in Renal Impairment |
Renal Impairment |
Hepatic Impairment |
|
|
|
Acyclovir, amantadine, aminoglycosides, aztreonam, |
Cidofovir, methenamine, |
Abacavir, atazanavir, caspofungin, |
carbapenems, cephalosporins,1 clarithromycin, colistin, |
nalidixic acid, nitrofurantoin, |
chloramphenicol, clindamycin, |
cycloserine, dalbavancin, daptomycin, didanosine, emtricitabine, |
sulfonamides (long-acting), |
erythromycin, fosamprenavir, indinavir, |
ethambutol, ethionamide, famciclovir, fluconazole, |
tetracyclines4 |
metronidazole, rimantadine, tigecycline |
flucytosine, foscarnet, ganciclovir, lamivudine, oseltamivir, |
|
|
penicillins,2 peramivir, polymyxin B, pyrazinamide, quinolones,3 |
|
|
ribavirin, rifabutin, rimantadine, stavudine, telavancin, |
|
|
telbivudine, telithromycin, tenofovir, terbinafine, trimethoprim- |
|
|
sulfamethoxazole, valacyclovir, vancomycin, zidovudine |
|
|
|
|
|
1Except ceftriaxone.
2Except antistaphylococcal penicillins (eg, nafcillin and dicloxacillin).
3Except moxi oxacin.
4Except doxycycline and minocycline.