Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Нейропсихология 83стр.doc
Скачиваний:
168
Добавлен:
09.02.2015
Размер:
1.04 Mб
Скачать

Нейропсихология

1.Становление нейропсихологии как науки.

Нейропсихология — междисциплинарное научное направление, лежащее на стыке психологии и нейронауки, нацелена на понимание связи структуры и функционирования головного мозга с психическими процессами и поведением живых существ. Термин нейропсихология применяется как к исследованиям с повреждениями у животных, так и работам, базирующимся на изучении электрической активности отдельных клеток (или групп клеток) у высших приматов (в том числе, существуют исследования человека в данном контексте).

Нейропсихология применяет научный метод и рассматривает отдельные психические процессы, как процессы обработки информации. Данная концепция пришла из когнитивной психологии и когнитивной науки. Это одна из самых эклектичных дисциплин психологии, пересекающаяся с исследованиями в области нейронауки, философии (особенно философии разума), нейрологии, психиатрии и информатики (особенно, в создании и изучении искусственных нейронных сетей).

На практике нейропсихологи в основном работают в научных-исследовательских организациях и в организациях, занятых клиническими исследованиями, специализированных клиниках (направление — клиническая нейропсихология), судебных и следственных учреждениях (часто занимаются судебной экспертизой в судебных процессах) или индустрии (часто как консультанты в организациях, где нейропсихологические знания важны и применяются при разработке продукции).

2.Основные направления в нейропсихологии: клиническое, реабилитационное, детское, экспериментальное, психофизиологическое.

Несмотря на сравнительную молодость нейропсихологии, в настоящее время появилось несколько направлений, различающихся своими задачами. Все эти направления объединены общими теоретическими представлениями и общей конечной задачей, состоящей в изучении мозговых механизмов психических процессов. Е. Д. Хомская выделяет следующие.

Клиническая нейропсихология, которая занимается исследованием больных с локальными поражениями мозга. Основной задачей является изучение нейропсихологических синдромов при локальных поражениях мозга. Исследования в этой области имеют большое практическое значение для диагностики, подготовки психологического заключения о возможности лечения, восстановления и прогноза дальнейшей судьбы больных. Основным методом является метод клинического нейропсихологического исследования. В настоящее время в клинической нейропсихологии изучаются синдромы, связанные с поражением правого полушария мозга, с дефектами межполушарного взаимодействия, с нарушением глубинных структур мозга. Дальнейшее развитие этого направления связано с развитием современных методов диагностики локальных поражений мозга.

Экспериментальная нейропсихология (нейропсихология познавательных процессов). Основной задачей является экспериментальное изучение различных форм нарушений психических процессов при локальных поражениях мозга. Благодаря работам А. Р. Лурия и его учеников наиболее изучены память и речь. Им была создана классификация афазий, основанная на представлении о речевой деятельности как сложной функциональной системе, значительно дополнены представления об организации памяти. В настоящее время проводятся исследования особенностей нарушения познавательных процессов и эмоционально-личностной сферы при разных по локализации поражениях мозга.

Реабилитационная нейропсихология. Основной задачей этого направления является восстановление ВПФ при локальных поражениях мозга. Наиболее разработаны принципы и методы восстановления речи. Разработки в этой области начались в годы Великой Отечественной войны (А. Р. Лурия, А. В. Запорожец, Б. Г. Ананьев, А. Н. Леонтьев). Были предложены научно обоснованные методы восстановления ВПФ, опирающиеся на центральное положение о том, что сложная психическая функция может быть восстановлена за счет перестройки нарушенной функциональной системы. В результате поврежденная функция начинает работать с помощью нового набора психических средств, что предполагает и ее новую мозговую организацию. В настоящее время в сферу деятельности нейропсихологов входят больные, перенесшие инсульт, различного рода травмы мозга и т. д. Разрабатываются новые методы восстановления речи, аудиовизуальные методы, групповые, воздействие на эмоционально-личностную сферу больных.

Экологическая нейропсихология оценивает влияние различных неблагоприятных экологических факторов на состояние психических функций и на эмоционально-личностную сферу с позиций нейропсихологии. Данное направление начало развиваться вскоре после Чернобыльской катастрофы, и в условиях постоянно ухудшающейся окружающей среды эти исследования становятся все более актуальными.

Нейропсихология развития. Задача - выявление закономерностей развития мозга. Н. Н. Корсакова с соавторами указывает, что это особенно важно для диагностики локальных поражений мозга и для диагностики минимальной мозговой дисфункции у детей, поскольку на разных этапах онтогенеза поражение одного участка мозга проявляется по-разному. Недостаточная эффективность отдельных функциональных систем (в том числе речи) может быть вызвана как индивидуальными особенностями онтогенеза ребенка, приводящими к незавершенности формирования функциональных систем, так и спецификой морфогенеза мозга ребенка, проявляющегося в неравномерном созревании мозговых зон. В последние годы в самостоятельную область выделилась нейропсихология детского возраста. Это новое направление нейропсихологии, изучающее специфику нарушения психических функций при локальных поражениях мозга у детей. Исследования в этой области позволяют выделить закономерности локализации высших психических функций, а также проанализировать влияние локализации очага поражения на психическую функцию в зависимости от возраста. Большое внимание уделяется нейропсихологическому анализу трудностей обучения у детей младшего школьного возраста в связи с минимальными мозговыми дисфункциями, которые приводят к специфическому формированию функциональных систем психики, нехарактерных для данного возрастного периода, и базируются на стихийном включении компенсаторных механизмов. Нейропсихологическая диагностика позволяет понять закономерности связи мозга и психических функций в онтогенезе и выявить мозговые детерминанты отклонения в темпе и уровне развития той или иной функции. Психофизиологическое направление в нейропсихологии - это направление, в задачу которого входит изучение физиологических механизмов нарушений высших психических функций. Оно развивается в тесной связи с психофизиологией, широко используя ее методы исследования (электроэнцефалография, окулография, миография и т. д.).

Нейропсихология сформировалась благодаря запросам практики, в первую очередь - необходимости диагностики локальных поражений мозга и восстановления нарушенных психических функций. По-прежнему актуальными остаются такие направления практического использования нейропсихологии, как диагностическое, реабилитационное и нейропсихологический подход.

Целью диагностического направления является практическое применение различных нейропсихологических методов исследования для определение зоны поражения мозга и оценки динамики состояния высших психических функций в до- и послеоперационном периоде. Эти методы были разработаны А. Р. Лурия на материале травматических и опухолевых поражений мозга, но их используют и для изучения других форм поражения мозга, в частности в клинике инсультов. За последнее время развитие технических средств диагностики локальных поражений головного мозга изменило место нейропсихологического диагностирования в системе различных диагностических мероприятий. Они все больше используются для оценки динамики состояния ВПФ в до- и послеоперационных периодах, поскольку нейропсихологические синдромы, отражающие функциональное состояние мозга, появляются раньше и исчезают позже, чем какие-либо другие симптомы. Кроме того, эти методы используют для контроля над лекарственной терапией больных, перенесших нейрохирургические операции.

Реабилитационное направление практического применения методов нейропсихологии связано с восстановлением нарушенных ВПФ, речи, интеллектуальной и мнестической деятельности.

В настоящее время все шире развивается нейропсихологический подход при изучении здорового человека, например, исследование межполушарной асимметрии.

  1. Структура нервной системы - задний, средний, промежуточный, передний мозг.

К заднему мозгу относятся мозговой мост и мозжечок: Он развивается из четвертого мозгового пузыря.

Мост

Мост снизу граничит с продолговатым мозгом, сверху переходит в ножки мозга, боковые его отделы образуют средние ножки мозжечка.

В передней (вентральной) части моста располагаются скопления серого вещества - собственные ядра моста, в задней (дорсальной) его части лежат ядра верхней оливы, ретикулярной формации и ядра V - VIII пар черепных нервов. Эти нервы выходят на основании мозга сбоку от моста и позади него на границе с мозжечком и продолговатым мозгом. Белое вещество моста в его передней части (основании) представлено поперечно идущими волокнами, направляющимися в средние ножки мозжечка. Они пронизываются мощными продольными пучками волокон пирамидных путей, образующих затем пирамиды продолговатого мозга и направляющихся в спинной мозг. В задней части (покрышке) проходят восходящие и нисходящие системы волокон.

Мозжечок

Мозжечок расположен дорсально от моста и продолговатого мозга. В нем выделяют два полушария и среднюю часть - червь. Поверхность мозжечка покрыта слоем серого вещества (кора мозжечка) и образует узкие извилины, разделенные бороздами. С их помощью поверхность мозжечка делится на дольки. Центральная часть мозжечка состоит из белого вещества, в котором заложены скопления серого вещества - ядра мозжечка. Самое большое из них - зубчатое ядро. Мозжечок связан с мозговым стволом тремя парами ножек: верхние соединяют его со средним мозгом, средние - с мостом и нижние - с продолговатым мозгом. В них проходят пучки волокон, соединяющих мозжечок с различными частями головного и спинного мозга.

Перешеек ромбовидного мозга в процессе развития составляет границу между задним и средним мозгом. Из него развиваются верхние ножки мозжечка, расположенный между ними верхний (передний) мозговой парус и треугольники петли, лежащие кнаружи от верхних ножек мозжечка.

Четвертый желудочек в процессе развития представляет собой остаток полости ромбовидного мозгового пузыря и является, таким образом, полостью продолговатого и заднего мозга. Внизу желудочек сообщается с центральным каналом спинного мозга, вверху переходит в мозговой водопровод среднего мозга, а в области крыши он связан тремя отверстиями с субарахноидальным (подпаутинным) пространством головного мозга. Передняя (вентральная) стенка его - дно IV желудочка - называется ромбовидной ямкой, нижняя часть которой образована продолговатым мозгом, а верхняя - мостом и перешейком. Задняя (дорсальная) - крыша IV желудочка - образована верхним и нижним мозговыми парусами и дополняется сзади пластинкой мягкой оболочки мозга, выстланной эпендимой. В этом участке находится большое количество кровеносных сосудов и образуются сосудистые сплетения IV желудочка. Место схождения верхнего и нижнего парусов вдается в мозжечок и образует шатер. Ромбовидная ямка имеет жизненно важное значение, так как в этой области заложено большинство ядер черепных нервов (V - XII пары).

Из третьего мозгового пузыря развивается средний мозг, к которому относятся ножки мозга, расположение, вентрально (кпереди) и пластинка крыши, или четверохолмие. Полостью среднего мозга является мозговой водопровод (сильвиев водопровод). Пластинка крыши состоит из двух верхних, и двух нижних холмиков (бугорков), в которых заложены ядра серого вещества. Верхние холмики связаны со зрительным путем, нижние - со слуховым.

От них берет начало двигательный путь, идущий к клеткам передних рогов спинного мозга. На вертикальном разрезе среднего мозга хорошо видны три его отдела: крыша, покрышка и основание, или собственно ножки мозга. Между покрышкой и основанием находится черное вещество. В покрышке лежат два крупных ядра - красные ядра и ядра ретикулярной формации. Мозговой водопровод окружен центральным серым веществом, в котором лежат ядра III и IV пар черепных нервов.

Основание ножек мозга образовано волокнами пирамидных путей и путей, соединяющих кору больших полушарий с ядрами моста и мозжечком. В покрышке лежат системы восходящих путей, образующих пучок, называемый медиальной (чувствительной) петлей. Волокна медиальной петли начинаются в продолговатом мозге от клеток ядер тонкого и клиновидного канатиков и заканчиваются в ядрах зрительного бугра.

Латеральная (слуховая) петля состоит из волокон слухового пути, идущих из области моста к нижним холмикам четверохолмия и медиальным коленчатым телам промежуточного мозга.

Промежуточный мозг располагается под мозолистым телом и сводом, срастаясь по бокам с полушариями большого мозга. К нему относятся: таламус (зрительные бугры), эпиталамус (надбугорная область), метаталамус (забугорная область) и гипоталамус (подбугорная область). Полостью промежуточного мозга является III желудочек.

Таламус представляет собой парные скопления серого вещества, покрытые слоем белого вещества, имеющие яйцевидную форму. Передний отдел его примыкает к межжелудочковому отверстию, задний, расширенный, - к четверохолмию. Латеральная поверхность таламуса срастается с полушариями и граничит с хвостатым ядром и внутренней капсулой. Медиальные поверхности обр азуют стенки III желудочка. Нижняя продолжается в гипоталамус. В таламусе различают три основные группы ядер: передние, латеральные и медиальные. В латеральных ядрах происходит переключение всех чувствительных путей, направляющихся к коре больших полушарий. В эпиталамусе лежит верхний придаток мозга - эпифиз, или шишковидное тело, подвешенное на двух поводках в углублении между верхними холмиками пластинки крыши. Метаталамус представлен медиальными и латеральными коленчатыми телами, соединенными пучками волокон (ручки холмиков) с верхними (латеральные) и нижними (медиальные) холмиками пластинки крыши. В них лежат ядра, являющиеся рефлекторными центрами зрения и слуха.

Гипоталамус располагается вентральнее зрительного бугра и включает в себя собственно подбугорную область и ряд образований, расположенных на основании мозга. Сюда относятся; конечная пластинка, зрительный перекрест, серый бугор, воронка с отходящим от нее нижним придатком мозга - гипофизом и сосцевидные тела. В гипоталамической области расположены ядра (надзрительное, околожелудочковое и др.), содержащие крупные нервные клетки, способные выделять секрет (нейросекрет), поступающий по их аксонам в заднюю долю гипофиза, а затем в кровь. В заднем отделе гипоталамуса лежат ядра, образованные мелкими нервными клетками, которые связаны с передней долей гипофиза особой системой кровеносных сосудов.

Третий желудочек расположен по средней линии и представляет собой узкую вертикальную щель. Боковые стенки его образованы зрительными буграми и подбугорной областью, передняя - столбами свода и передней спайкой, нижняя - образованиями гипоталамуса и задняя - ножками мозга и надбугорной областью. Верхняя стенка - крыша III желудочка, - самая тонкая и состоит из мягкой (сосудистой) оболочки мозга, выстланной со стороны полости желудочка эпителиальной пластинкой (эпендимой). Отсюда в полость желудочка вдавливается большое количество кровеносных сосудов: и образуется сосудистое сплетение. Спереди III желудочек сообщается с боковыми желудочками (I и II) межжелудочковыми отверстиями, а сзади переходит в мозговой водопровод.

Конечный мозг развивается из переднего мозгового пузыря, состоит из сильно развитых парных частей - правого и левого полушария и соединяющей их срединной части.

Полушария разделены продольной щелью, в глубине которой лежит пластинка белого вещества, состоящая из волокон, соединяющих два полушария,- мозолистое тело. Под мозолистым телом находится свод, представляющий собой два изогнутых волокнистых тяжа, которые в средней части соединены между собой, а спереди и сзади расходятся, образуя столбы и ножки свода. Спереди от столбов свода находится передняя спайка. Между передней частью мозолистого тела и сводом натянута тонкая вертикальная пластинка мозговой ткани - прозрачная перегородка.

Полушарие образовано серым и белым веществом. В нем различают самую большую часть, покрытую бороздами и извилинами, - плащ, образованный лежащим по поверхности серым веществом - корой полушарий; обонятельный мозг и скопления серого вещества внутри полушарий - базальные ядра. Два последних отдела составляют наиболее старую в эволюционном развитии часть полушария. Полостями конечного мозга являются боковые желудочки.

В каждом полушарии различают три поверхности: верхнебоковую (верхнелатеральную) выпуклую соответственно своду черепа, срединную (медиальную) - плоскую, обращенную к такой же поверхности другого полушария, и нижнюю - неправильной формы. Поверхность полушария имеет сложный рисунок, благодаря идущим в различных направлениях бороздам и валикам между ними - извилинам. Величина и форма борозд и извилин подвержены значительным индивидуальным колебаниям. Однако существует несколько постоянных борозд, которые ясно выражены у всех и раньше других появляются в процессе развития зародыша.

Ими пользуются для разделения полушарий на большие участки, называемые долями. Каждое полушарие делят на пять долей: лобную, теменную, затылочную, височную и скрытую долю, или островок, расположенный в глубине боковой борозды. Границей между лобной и теменной долями является центральная борозда, между теменной и затылочной - теменно-затылочная.

Височная доля отделена от остальных боковой бороздой. На верхнелатеральной поверхности полушария в лобной доле различают предцентральную борозду, отделяющую предцентральную извилину, и две лобные борозды: верхнюю и нижнюю, делящие остальную часть лобной доли на верхнюю, среднюю и нижнюю лобные извилины.

В теменной доле проходит постцентральная борозда, отделяющая постцентральную извилину, и внутритеменная, делящая остальную часть теменной доли на верхнюю и нижнюю теменные дольки. В нижней дольке выделяют надкраевую и угловую извилины. В височной доле две параллельно идущие борозды - верхняя и нижняя височные - делят ее на верхнюю, среднюю и нижнюю височные извилины. В области затылочной доли наблюдаются поперечные затылочные борозды и извилины. На медиальной поверхности хорошо видны борозда мозолистого тела и поясная, между которыми находится поясная извилина.

Над ней, окружая центральную борозду, лежит парацентральная долька. Между теменной и затылочной долями проходит теменно-затылочная борозда, а позади нее - шпорная борозда. Участок между ними называется клином, а лежащий впереди - преклиньем. В месте перехода на нижнюю (базальную) поверхность полушария лежит медиальная затылочно-височная, или язычная, извилина. На нижней поверхности, отделяя полушарие от ствола мозга, проходит глубокая борозда гиппокампа (борозда морского конька), кнаружи от которой находится парагиппокампальная извилина. Латеральнее она отделена коллатеральной бороздой от боковой затылочно-височной извилины. Островок, расположенный в глубине латеральной (боковой) борозды, также покрыт бороздами и извилинами.

Кора полушарий большого мозга представляет собой слой серого вещества толщиной до 4 мм. Она образована слоями нервных клеток и волокон расположенных в определенном порядке.

Наиболее типично устроенные участки филогенетически более новой коры состоят из шести слоев клеток, старая и древняя кора имеет меньшее количество слоев и устроена проще. Разные участки коры имеют разное клеточное и волокнистое строение. В связи с этим существует учение о клеточном строении коры (цитоархитектоника) и волокнистом строении (миелоархитектоника) коры полушарии большого мозга.

Обонятельный мозг у человека представлен рудиментарными образованиями, хорошо выраженными у животных, и составляет наиболее старые участки коры полушарий.

Базальные ядра представляют собой скопления серого вещества внутри полушарий. К ним относится полосатое тело, состоящее из хвостатого и чечевицеобразного ядер, соединенных между собой. Чечевицеобразное ядро делится на две части: скорлупу, расположенную снаружи, и бледный шар, лежащий внутри. Они являются подкорковыми двигательными центрами.

Кнаружи от чечевицеобразного ядра расположена тонкая пластинка серого вещества - ограда, в переднем отделе височной доли лежит миндалевидное тело. Между базальными ядрами и зрительным бугром находятся прослойки белого вещества, внутренняя, наружная и самая наружная капсулы. Через внутреннюю капсулу проходят проводящие пути.

Боковые желудочки (правый и левый) являются полостями конечного мозга, залегают ниже уровня мозолистого тела в обоих полушариях и сообщаются через межжелудочковые отверстия с III желудочком. Они имеют неправильную форму и состоят из переднего, заднего и нижнего рогов и соединяющей их центральной части. Передний рог лежит в лобной доле, он кзади продолжается в центральную часть, которая соответствует теменной доле. Сзади центральная часть переходит в задний и нижний рога, расположенные в затылочной и височной долях. В нижнем роге расположен валик - гиппокамп (морской конек). С медиальной стороны в центральную часть боковых желудочков впячивается сосудистое сплетение, продолжающееся в нижний рог. Стенки боковых желудочков образованы белым веществом полушарий и хвостатыми ядрами. К центральной части снизу примыкает таламус.

Белое вещество полушарий занимает пространство между корой и базальными ядрами. Оно состоит из большого количества нервных волокон, идущих в разных направлениях. Выделяют три системы волокон полушарий: ассоциативные (сочетательные), соединяющие части одного и того же полушария; комиссуральные (спаечные), соединяющие части правого и левого полушарий, к которым относятся в полушариях мозолистое тело, передняя спайка и спайка свода, и проекционные волокна, или проводящие пути, соединяющие полушария с лежащими ниже отделами головного мозга и спинным мозгом.

  1. Категории отражения, функции, информации и активности как объяснительные принципы связи мозга и психических процессов.

  1. Культурно-историческая теория Л. С. Выготского, понятие зоны ближайшего развития.

По Л.С. Выготскому, движущая сила психического развития - обучение. Важно отметить, что развитие и обучение - это разные процессы. По словам Л.С. Выготского, процесс развития имеет внутренние законы самодвижения.           "Развитие, - пишет он, - есть процесс формирования человека или личности, совершающийся путем возникновения на каждой ступени новых качеств, специфических для человека, подготовленных всем предшествующим ходом развития, но не содержащихся в готовом виде на более ранних ступенях".           Обучение, по Л.С. Выготскому, есть внутренне необходимый и всеобщий момент в процессе развития у ребенка не природных, но исторических особенностей человека.           Обучение не тождественно развитию. Оно создает зону ближайшего развития, то есть вызывает у ребенка к жизни, пробуждает и приводит в движение внутренние процессы развития, которые вначале для ребенка возможны только в сфере взаимоотношения с окружающими и сотрудничества с товарищами, но затем, пронизывая весь внутренний ход развития, становятся достоянием самого ребенка. Понятие "зона ближайшего развития" - логическое следствие закона становления высших психических функций.           Л.С. Выготским были осуществлены экспериментальные исследования отношения между обучением и развитием. Это изучение житейских и научных понятий, исследование усвоения родного и иностранного языков, устной и письменной речи, зоны ближайшего развития. Последнее - подлинное открытие Л.С. Выготского, которое известно теперь психологам всего мира.           Зона ближайшего развития - это расстояние между уровнем актуального развития ребенка и уровнем возможного развития, определяемым с помощью задач, решаемых под руководством взрослых. Как пишет Л.С. Выготский, "зона ближайшего развития определяет функции, не созревшие еще, но находящиеся в процессе созревания; функции, которые можно назвать не плодами развития, а почками развития, цветами развития". "Уровень актуального развития характеризует успехи развития, итоги развития на вчерашний день, а зона ближайшего развития характеризует умственное развитие на завтрашний день".           Понятие зоны ближайшего развития имеет важное теоретическое значение и связано с такими фундаментальными проблемами детской и педагогической психологии, как возникновение и развитие высших психических функций, соотношение обучения и умственного развития, движущие силы и механизмы психического развития ребенка.           Зона ближайшего развития - логическое следствие закона становления высших психических функций, которые формируются сначала в совместной деятельности, в сотрудничестве с другими людьми, и постепенно становятся внутренними психическими процессами субъекта. Когда психический процесс формируется в совместной деятельности, он находится в зоне ближайшего развития; после формирования он становится формой актуального развития субъекта.           Феномен зоны ближайшего развития свидетельствует о ведущей роли обучения в умственном развитии детей. "Обучение только тогда хорошо, - писал Л.С. Выготский, - когда оно идет впереди развития". Тогда оно пробуждает и вызывает к жизни много других функций, лежащих в зоне ближайшего развития. Применительно к школе это означает, что обучение должно ориентироваться не столько на уже созревшие функции, пройденные циклы развития, сколько на созревающие функции. Возможности обучения во многом определяются зоной ближайшего развития. Обучение, разумеется, может ориентироваться на уже пройденные циклы развития - это низший порог обучения, - но оно может ориентироваться на еще не созревшие функции, на зону ближайшего развития, что характеризует высший порог обучения. Между этими порогами и находится оптимальный период обучения. "Педагогика должна ориентироваться не на вчерашний, а на завтрашний день детского развития", - писал Л.С. Выготский. Обучение с ориентацией на зону ближайшего развития может вести развитие вперед, ибо то, что лежит в зоне ближайшего развития, в одном возрасте преобразуется, совершенствуется и переходит на уровень актуального развития в следующем возрасте, на новой возрастной стадии. Ребенок в школе осуществляет деятельность, которая постоянно дает ему возможность роста. Эта деятельность помогает ему подняться как бы выше самого себя.           Как всякая ценная идея, понятие зоны ближайшего развития имеет большое практическое значение для решения вопроса об оптимальных сроках обучения, причем это особенно важно как для массы детей, так и для каждого отдельного ребенка. Зона ближайшего развития - симптом, критерий в диагностике умственного развития ребенка. Отражая область еще не созревших, но уже созревающих процессов, зона ближайшего развития дает представление о внутреннем состоянии, потенциальных возможностях развития и на этой основе позволяет сделать научно обоснованный прогноз и дать практические рекомендации. Определение обоих уровней развития - актуального и потенциального, а также одновременно и зоны ближайшего развития, - составляет вместе то, что Л.С. Выготский называл нормативной возрастной диагностикой в отличие от симптоматической диагностики, опирающейся лишь на внешние признаки развития. Важным следствием этой идеи можно считать и то, что зона ближайшего развития может быть использована как показатель индивидуальных различий детей.           Одним из доказательств влияния обучения на психическое развитие ребенка служит гипотеза Л.С. Выготского о системном и смысловом строении сознания и его развития в онтогенезе. Выдвигая эту идею, Л.С. Выготский решительно выступал против функционализма современной ему психологии. Он считал, что человеческое сознание - не сумма отдельных процессов, а система, структура их. Ни одна функция не развивается изолированно. Развитие каждой функции зависит от того, в какую структуру она входит и какое место в ней занимает. Так, в раннем возрасте в центре сознания находится восприятие, в дошкольном возрасте - память, в школьном - мышление. Все остальные психические процессы развиваются в каждом возрасте под влиянием доминирующей в сознании функции. По мнению Л.С. Выготского, процесс психического развития состоит в перестройке системной структуры сознания, которая обусловлена изменением его смысловой структуры, то есть уровнем развития обобщений: "Вход в сознание возможен только через речь". И переход от одной структуры сознания к другой осуществляется благодаря развитию значения слова, иначе говоря, - обобщения. Если на системное развитие сознания обучение не оказывает прямого воздействия, то развитием обобщения и, следовательно, изменением смысловой структуры сознания можно непосредственно управлять. В ходе обучения в результате формирования обобщений перестраивается вся система сознания. Поэтому, по словам Л.С. Выготского, "один шаг в обучении может означать сто шагов в развитии", или "обучаем на копейку, а развитие получаем на рубль".

  1. Теория функциональных систем П. К. Анохина, акцептор результата действия.

Взаимодействие человека и животных с окружающей средой осуществляется через целенаправленную деятельность или поведение. Двигательный акт как элемент поведения воспроизводит основные звенья его структуры. Ведущим системообразующим фактором целенаправленного поведения, так же как и отдельного двигательного акта, является полезный для жизнедеятельности организма приспособительный результат.

С позиции принципа системного квантования процессов жизнедеятельности двигательный акт может быть соотнесен с отдельным квантом поведения. Это наиболее очевидно при иерархическом квантовании, когда удовлетворение ведущей потребности значительно отставлено во времени и для достижения конечного результата необходимо выполнить ряд предварительных действий. Например, при конструировании человеком определенного изделия, когда для создания конечного продукта необходимо решить ряд промежуточных задач со своими конкретными результатами (Судаков К.В., 1997).

Наиболее совершенная модель структуры поведения изложена в концепции функциональных систем Петра Кузьмича Анохина (1898-1974).

Изучая физиологическую структуру поведенческого акта, П.К. Анохин пришел к выводу о необходимости различать частные механизмы интеграции, когда эти частные механизмы вступают между собой в сложное координированное взаимодействие. Они объединяются, интегрируются в систему более высокого порядка, в целостную архитектуру приспособительного, поведенческого акта. Этот принцип интегрирования частных механизмов был им назван принципом «функциональной системы».

Определяя функциональную систему как динамическую, саморегулирующуюся организацию, избирательно объединяющую структуры и процессы на основе нервных и гуморальных механизмов регуляции для достижения полезных системе и организму в целом приспособительных результатов, П.К. Анохин распространил содержание этого понятия на структуру любого целенаправленного поведения (Анохин П.К., 1968). С этих позиций может быть рассмотрена и структура отдельного двигательного акта.

Функциональная система имеет разветвленный морфофизиологический аппарат, обеспечивающий за счет присущих ей закономерностей как эффект гомеостаза, так и саморегуляции. Выделяют два типа функциональных систем. 1. Функциональные системы первого типа обеспечивают постоянство определенных констант внутренней среды за счет системы саморегуляции, звенья которой не выходят за пределы самого организма. Примером может служить функциональная система поддержания постоянства кровяного давления, температуры тела и т.п. Такая система с помощью разнообразных механизмов автоматически компенсирует возникающие сдвиги во внутренней среде. 2. Функциональные системы второго типа используют внешнее звено саморегуляции. Они обеспечивают приспособительный эффект благодаря выходу за пределы организма через связь с внешним миром, через изменения поведения. Именно функциональные системы второго типа лежат в основе различных поведенческих актов, различных типов поведения.

Центральная архитектоника функциональных систем, определяющих целенаправленные поведенческие акты различной степени сложности, складывается из следующих последовательно сменяющих друг друга стадий: -> афферентный синтез, -> принятие решения, -> акцептор результатов действия, -> эфферентный синтез, -> формирование действия, и, наконец, -> оценка достигнутого результата/

АФФЕРЕНТНЫЙ (от лат. afferens — приносящий), несущий к органу или в него (напр., афферентная артерия); передающий импульсы от рабочих органов (желез, мышц) к нервному центру (афферентные, или центростремительные, нервные волокна). ЭФФЕРЕНТНЫЙ (от лат. efferens — выносящий), выносящий, выводящий, передающий импульсы от нервных центров к рабочим органам, напр. эфферентные, или центробежные, нервные волокна. АКЦЕПТОР (от лат. acceptor — принимающий).

Поведенческий акт любой степени сложности начинается со стадии афферентного синтеза . Возбуждение, вызванное внешним стимулом, действует не изолированно. Оно непременно вступает во взаимодействие с другими афферентными возбуждениями, имеющими иной функциональный смысл. Головной мозг непрерывно обрабатывает все сигналы, поступающие по многочисленным сенсорным каналам. И только в результате синтеза этих афферентных возбуждений создаются условия для реализации определенного целенаправленного поведения. Содержание афферентного синтеза определяется влиянием нескольких факторов: мотивационного возбуждения, памяти, обстановочной и пусковой афферентации.

Мотивационное возбуждение появляется в центральной нервной системе в следствии той или другой витальной, социальной или идеальной потребности. Специфика мотивационного возбуждения определяется особенностями, типом вызвавшей его потребности. Оно – необходимый компонент любого поведения. Важность мотивационного возбуждения для афферентного синтеза вытекает уже из того, что условный сигнал теряет способность вызывать ранее выработанное пищедобывательное поведение (например, побежку собаки к кормушке для получения пищи), если животное уже хорошо накормлено и, следовательно, у него отсутствует мотивационное пищевое возбуждение.

Роль мотивационного возбуждения в формировании афферентного синтеза определяется тем, что любая поступающая информация соотносится с доминирующим в данный момент мотивационным возбуждением, которое действует как фильтр, отбирающий наиболее нужное для данной мотивационной установки. Доминирующая  мотивация как первичный системообразующий фактор определяет все последующие этапы мозговой деятельности по формированию поведенческих программ. Специфика мотиваций определяет характер и «химический статус» внутрицентральной интеграции и набор вовлекаемых мозговых аппаратов. В качестве полезного результата определенного поведенческого  акта выступает удовлетворение потребности, т.е. снижение уровня мотивации.

Нейрофизиологической основой мотивационного возбуждения является избирательная активация различных нервных структур, создаваемая прежде всего лимбической и ретикулярной системами мозга. На уровне коры мотивационное возбуждение представлено специфическим паттерном возбуждения.

  1. Понятие гетерохронности развития, внутрисистемная и межсистемная гетерохронность.

Сформулируем основные закономерности этого процесса.

1. Развитие характеризуется неравномерностью и гетерохронностью. Неравномерность развития проявляется в том, что различные психические функции, свойства и образования развиваются неравномерно: каждая из них имеет свои стадии подъема, стабилизации и спада, т. е. развитию присущ колебательный характер. О неравномерности развития психической функции судят по темпу, направленности и длительности происходящих изменений. Установлено, что наибольшая интенсивность колебаний (неравномерность) в развитии функций приходится на период их высших достижений. Чем выше уровень продуктивности в развитии, тем выраженнее колебательный характер ее возрастной динамики (Рыбалко Е. Ф., 1990).

Этим объясняются резкие перепады в развитии, например, познавательных функций в подростковом и юношеском возрасте.

Показано, что неравномерный, колебательный характер развития обусловлен нелинейной, многовариантной природой развивающейся системы. При этом чем ниже уровень развития системы, тем сильнее колебания: высокие подъемы сменяются значительными спадами. В сложноорганизован-ных (высокоразвитых) системах колебания становятся частыми, но амплитуда их резко уменьшается. То есть сложная система как бы сама себя стабилизирует (Князева Е. Н., Курдюмов С. П., 1994). Система в своем развитии идет к единству и гармонии частей. Эти выводы подтверждаются данными о динамике развития познавательных функций на протяжении детского, подросткового и взрослого возрастов. С возрастом резко уменьшается перепад в развитии той или иной функции, но увеличивается частота колебаний (Развитие психофизиологических функций..., 1972; Степанова Е. И., 1995; Рыбалко Е. Ф., 1990). Таким образом, путем неравномерного или колебательного характера развития система поддерживает свою целостность и при этом динамично развивается.

Гетерохронность развития означает асинхронность (несовпадение во времени) фаз развития отдельных органов и функций. Чем же она вызвана?

Неравномерность — неодинаковость, непостоянство в развитии психических функций. Гетерохронность — разновременность, асинхронность, несовпадение во времени фаз развития отдельных органов и функций.

Если неравномерность развития обусловлена нелинейной природой системы, то гетерохронность связывается с особенностями ее структуры, прежде всего с неоднородностью ее элементов. «Единство через разнообразие» — вот манифест существования любой саморазвивающейся и самоорганизующейся системы. Именно это обстоятельство и обусловливает избирательный характер развития структур и функций в соответствии с внешними и внутренними факторами. В связи с этим становится понятным, почему темпы развития разных психических образований оказываются разными.

мнение ученых

По мнению П. К. Анохина, гетерохронность является особой закономерностью, заключающейся в неравномерном развертывании наследственной информации. Он же различает внутрисистемную и межсистемную гетерохронность. Внутрисистемная гетерохронность проявляется в неодновременной закладке и различных темпах созревания отдельных фрагментов одной и той же функции, а межсистемная относится к закладке и темпам развития структурных образований, которые будут необходимы организму в разные периоды его постнатального развития. Например, вначале формируются филогенетически более древние анализаторы, а затем более молодые (Анохин П. К., 1968).

Для правильного понимания гетерохронии важно иметь в виду значение и роль того или иного структурного образования или функции в жизнедеятельности человека. Э. Мейманом было показано: чем нужнее та или иная функция, чем важнее ее роль на данном этапе развития, тем раньше она развивается. Например, ребенок учится ориентироваться в пространстве быстрее, чем во времени.

Значение и роль функции обусловливают и ее долговечность. Так, чувствительность человека к зеленому и желтому цветам после 50 лет почти или совсем не снижается, в то время как чувствительность к синему неуклонно падает после 25 лет. По мнению Е. Ф. Рыбалко, гетерохронность — дополнительный механизм регуляции индивидуального развития в различные периоды жизни человека, действие которого усиливается во время роста и инволюции (Рыбалко Е. Ф., 1990).

Приведенные факты подтверждают вывод П. К. Анохина об опережающих темпах созревания жизненно важных функций человека.

2. Неустойчивость развития. Неравномерность и гетерохронность тесно связаны с неустойчивостью развития. Развитие всегда проходит через неустойчивые периоды. Наиболее ярко эта закономерность проявляется в кризисах детского развития. В свою очередь, высший уровень устойчивости, динамизм системы возможен на основе частых, мелкоамплитудных колебаний, с одной стороны, и несовпадения во времени разных психических процессов, свойств и функций — с другой. Таким образом, устойчивость возможна благодаря неустойчивости.

3. Сенситивность развития. Сенситивный период развития — это период повышенной восприимчивости психических функций к внешним воздействиям, особенно к воздействию обучения и воспитания.

Б. Г. Ананьев понимал сенситивность «как временные комплексные характеристики коррелируемых функций, сенсибилизированных к определенному моменту обучения» и как следствие «действия созревания функций и относительной сформированности сложных действий, обеспечивающих более высокий уровень функционирования мозга» (Ананьев Б. Г., Дворя-шина М. А., 1968).

Сенситивность возрастная — оптимальное сочетание условий для развития определенных психических процессов и свойств, присущее определенному возрастному периоду.

Кумулятивность развития — накопление в ходе роста психических свойств, качеств, умений, навыков, приводящее к качественным изменениям в их развитии.

Дивергентность развития — многообразие появляющихся в ходе развития признаков и свойств, действий и способов поведения на основе их постепенного расхождения.

Конввргентность развития — сходство, сближение, свертывание, синтез, усиление избирательности в ходе развития психических процессов и свойств, действий и способов поведения.

Периоды сенситивного развития ограничены во времени. Поэтому, если упущен сенситивный период развития той или иной функции, в дальнейшем потребуется гораздо больше усилий и времени для ее становления.

4. Кумулятивность психического развития. Кумулятивность психического развития означает, что результат развития каждой предшествующей стадии включается в последующую, при этом определенным образом трансформируясь. Такое накопление изменений подготавливает качественные преобразования в психическом развитии. Характерный пример — последовательное становление и развитие наглядно-действенного, наглядно-образного и словесно-логического мышления, когда каждая последующая форма мышления возникает на базе предшествующей и включает ее в себя.

5. Дивергентность—конвергентность хода развития. Психическое развитие включает в себя две противоречивые и взаимосвязанные тенденции — дивергенцию и конвергенцию. В данном случае дивергенция — это повышение разнообразия в процессе психического развития, а конвергенция — его свертывание, усиление избирательности.

  1. Принципы системной и динамической локализации функций, узкий локализационизм и эквипотенционализм.

Принцип системной локализации функций. Каждая психическая функция опирается на сложные взаимосвязанные структурно-функциональные системы мозга. Различные корковые и подкорковые мозговые структуры принимают свое, "долевое" участие в реализации функции, выполняя роль звена более общей единой функциональной системы.

Принцип динамической локализации функций. Каждая психическая функция имеет динамическую, изменчивую мозговую организацию, различную у разных людей и в разные периоды их жизни. Благодаря качеству полифункциональности, под влиянием новых воздействий мозговые структуры могут перестраивать свои функции.

Разработка этих фундаментальных для нейропсихологии принципов связана с именами Павлова, Ухтомского, Выготского, Лурия и Анохина. В историческом аспекте по этой проблеме существовали две крайние точки зрения: узкий локализационизм, исходящий из представления о психической функции как о неразложимой на компоненты и жестко связанной с конкретными мозговыми структурами, и эквипотенционализм, трактующий мозг и кору больших полушарий как однородное целое, равнозначное для психических функций во всех своих отделах. В соответствии со второй концепцией поражение любой части мозга должно было бы приводить к пропорциональному ухудшению всех психических функций одновременно и зависеть только от массы пораженного мозга. Фактом, вступавшим в явное противоречие с обоими взглядами, было то, что при локальных поражениях мозга наблюдался высокий уровень компенсации возникших дефектов или замещения выпавших функций другими отделами мозга.

В соответствии с современными воззрениями или обобщающим принципом системной динамической локализации, ВПФ охватывают сложные системы совместно работающих зон мозга, каждая из которых вносит свой вклад в осуществление психических процессов и которые могут располагаться в совершенно различных, иногда далеко отстоящих друг от друга участках мозга (Лурия). Привлекаемые функциональные системы являются многомерными многоуровневыми констелляциями различных мозговых образований. Отдельные их звенья должны быть увязаны во времени, по скоростям и ритмам выполнения, то есть должны составлять единую динамическую систему. Исследования глубоких мозговых структур показали, что характеристики жесткости-пластичности работы элементов психофизиологических систем могут анализироваться под углом зрения вероятности их привлечения к работе: отдельные элементы ВПФ могут быть "жесткими", то есть принимать постоянное участие в тех или иных актах, а часть - "гибкими" - включаться в работу лишь при определенных условиях. Кроме того, динамическая локализация ВПФ имеет еще и хронологический аспект, отслеживающий изменения их структуры от детского возраста к взрослому.

Узкий локализационизм - нейропсихологическое направление, в котором психологические функции рассматривались как единые и неразложимые на составные части ""психические способности"", которые реализуются за счет работы узко локализованных участков коры головного мозга. Считалось, что при поражение того или иного центра происходит выпадение соответствующей психологической функции. К этому направлению могут быть отнесены Ф. Галль - , создавший френологическую карта мозга, и К. Клейст - с его локализационной картой:

Френологическая карта Галля:

ЭКВИПОТЕНЦИОНАЛИЗМ (лат. aequus - равный, potentia - сила) - направление в нейрофизиологии, клинической неврологии, нейропсихологии, утверждающее, что некоторые высшие психические процессы возможны только благодаря функционированию всех отделов больших полушарий. В противоположность локализационизму, утверждающему, что каждая функция локализована в определённом участке мозга и симптомы поражения мозга зависят исключительно от его локализации, сторонники эквипотенционализма считают, что некоторые последствия поражения мозга (напр., деменция) зависят не столько от локализации, сколько от обширности поражения. В более узком смысле под эквипотенционализмом понимают концепцию, согласно которой к.-л. часть той или иной мозговой системы, например зрительной, при поражении мозга может брать на себя иную функцию, в норме выполняемую др. частями этой системы. Современные представления о функциональной организации мозга, основанные на теории Л. С. Выготского и А. Р. Лурия о системной динамической локализации высших мозговых функций, творчески вобрали в себя многие представления сторонников эквипотенционализма.

  1. Первый блок мозга и его функциональная нагрузка.

БЛОК РЕГУЛЯЦИИ ТОНУСА И БОДРСТВОВАНИЯ Для того чтобы обеспечить полноценные психические процессы, необходимо бодрственное состояние человека. Только в условиях оптимального бодрствования человек может: •наилучшим образом принимать и перерабатывать информацию •вызывать в памяти нужные избирательные системы связей •программировать деятельность •осуществлять контроль за деятельностью •корригировать ошибки •сохранять выбранную направленность деятельности Хорошо известно, что в состоянии сна такая четкая регуляция психических процессов невозможна, ход всплывающих воспоминаний и ассоциаций приобретает неорганизованный характер и направленное выполнение психической деятельности становится недоступным. Для осуществления каждой организованной деятельности необходимость возникновения такого оптимального состояния мозговой коры, когда нервные процессы характеризуются известной: •концентрированностью •уравновешенностью возбуждения и торможения •высокой подвижностью, позволяющей с легкостью переходить от одной деятельности к другой Именно эти черты оптимальной нейродинамики исчезают в просоночном или сонном состоянии, при котором тонус коры снижается. Все это показывает, какую решающую роль играет сохранение оптимального тонуса коры для организованного протекания психической деятельности. Возникает, однако, вопрос: какие аппараты мозга обеспечивают сохранение этого тонуса коры? Был установлен тот факт, что аппараты, обеспечивающие и регулирующие тонус коры, находятся не в самой коре, а в лежащих ниже стволовых и подкорковых отделах мозга и что эти аппараты находятся в двойных отношениях с корой, тонизируя ее и испытывая ее регулирующее влияние. В 1949 г. Г. Мэгун и Г. Моруцци обнаружили, что в стволовых отделах головного мозга находится особое нервное образование, по своему морфологическому строению и по своим функциональным свойствам приспособленное к тому, чтобы градуально (а не по принципу "все или ничего") регулировать состояние мозговой коры, изменяя ее тонус и обеспечивая ее бодрствование. Поскольку оно построено по типу нервной сети, в которую вкраплены тела нервных клеток, соединяющихся друг с другом короткими отростками, оно было названо ретикулярной формацией (reticulum - сеть). Она-то и модулирует состояние нервного аппарата. •Одни из волокон этой ретикулярной формации (РФ) направляются вверх, оканчиваясь в конечном итоге в новой коре. Это восходящая ретикулярная система, играющая решающую роль в активации коры и в регуляции ее активности. •Другие волокна идут в обратном направлении: начинаясь в новой и древней коре, направляются к расположенным ниже образованиям мозга. Это нисходящая ретикулярная система. Она ставит нижележащие образования под контроль тех программ, которые возникают в коре головного мозга и выполнение которых нуждается в модификации и модуляции состояний бодрствования. Оба эти раздела РФ составляют единую систему, единый саморегулирующийся аппарат, который обеспечивает изменение тонуса коры, но вместе с тем сам находится под ее влиянием, изменяясь и модифицируясь под регулирующим влиянием происходящих в ней изменений. Описание РФ явилось открытием первого функционального мозгового блока, обеспечивающего регуляцию тонуса коры и состояний бодрствования, позволяющего регулировать эти состояния соответственно поставленным перед человеком задачам. Исследование его действия показало, что этот блок вызывает реакцию пробуждения (arousal), повышает возбудимость, обостряет чувствительность и оказывает тем самым общее активирующее влияние на кору головного мозга. Поражение входящих в него структур приводит к резкому снижению тонуса коры, к появлению состояния сна, а иногда и к коматозному состоянию. Вместе с тем было обнаружено, что раздражение других ядер РФ (тормозящих) вело к возникновению характерных для сна изменений в электрической активности коры и к развитию сна. Активизирующая РФ, являющаяся важнейшей частью первого функционального блока мозга, в некотором роде, является специфической. Как показали наблюдения, РФ имеет определенные черты дифференцированности или "специфичности" как по своим анатомическим характеристикам, так и по своим источникам и по формам проявления. Только эта дифференцированность ("специфичность") не имеет ничего общего с "модальностью" основных органов чувств (или анализаторов) и носит, как показал ряд авторов своеобразный характер. Расмотрим дифференцированность источников активации, составляющей основную функцию РФ, и дифференцированность ее топографической организации. Нервная система всегда находится в состоянии некоторого тонуса активности и сохранение его связано со всякой жизнедеятельностью. Однако существуют ситуации, в которых обычный тонус недостаточен и должен быть повышен. Эти ситуации и являются основными источниками активации нервной системы. Можно выделить по крайней мере три основных источника этой активации, причем действие каждого из них передается при посредстве активирующей РФ и, что существенно, при помощи ее различных частей. !!! В этом и состоит дифференцированность или специфичность функциональной организации этой "неспецифической" активирующей системы. 1. Первый источник - обменные процессы организма, или, как иногда выражаются, его "внутреннее хозяйство". Эти процессы, приводящие к сохранению внутреннего равновесия организма (гомеостазиса). •Более простые формы этого вида активации связаны с дыхательными, пищеварительными процессами, с сахарным и белковым обменом, с внутренней секрецией и т.д. Все они регулируются главным образом аппаратами гипоталамуса. Тесно связанная с гипоталамусом РФ продолговатого и среднего мозга также играет значительную роль в этой наиболее простой ("витальной") форме активации. •Более сложные формы этого вида активации связаны с обменными процессами, организованными в определенные врожденные системы поведения (системы инстинктивного, или безусловно-рефлекторного, пищевого и полового поведения). Эти формы активации обеспечиваются более высокорасположенными ядрами мезэнцефальной, диэнцефальной и лимбической РФ. Общим для обоих этих видов активации является то, что их источник - этo обменные (и гуморальные) процессы, протекающие в организме. Различия же их заключаются в неодинаковом по сложности уровне организации и в том факте, что: •если первые процессы, наиболее элементарные, вызывают лишь примитивные автоматические реакции, связанные с недостатком кислорода или выделением запасных веществ из их органических депо и при голодании •то вторые организованы в сложные поведенческие системы, в результате действия которых удовлетворяются соответствующие потребности и восстанавливается равновесие "внутреннего хозяйства организма" 2. Второй источник активации - связан с поступлением в организм раздражителей из внешнего мира и приводит к возникновению совершенно иных форм активации, проявляющихся в виде ориентировочного рефлекса. Человек живет в мире постоянно доходящей до него информации, и потребность в этой информации иногда оказывается у него не меньшей, чем потребность в органическом обмене веществ. Лишенный постоянного притока информации, что имеет место в редких случаях выключения всех воспринимающих органов, он впадает в сон, из которого его может вывести только постоянно поступающая информация. Нормальный человек переносит ограничение в контакте с внешним миром очень тяжело. Однако эта тоническая форма активации, связанная с работой органов чувств, является лишь наиболее элементарным источником активации описываемого типа. Поскольку человек живет в условиях постоянно меняющейся среды, эти изменения - иногда неожиданные для него - требуют известного обостренного состояния бодрствования. Такое обостренное бодрствование должно сопровождать всякое изменение в окружающих условиях, всякое появление неожиданного (а иногда и ожидаемого) изменения условий. Оно должно проявляться в мобилизации организма к возможным неожиданностям, и именно это лежит в основе особого вида активности - ориентировочного рефлекса и который, не будучи обязательно связанным с основными биологическими формами инстинктивных процессов (пищевым, половым и т.д.), является важнейшей основой познавательной деятельности. Ориентировочный рефлекс, или реакции пробуждения (активации), связаны с работой РФ мозга. Как показали исследования, ориентировочный рефлекс и реакция активации представляют собой сложное, комплексное явление. Описаны тоническая и генерализованная формы этой реакции, с одной стороны, и фазическая и локальная ее формы - с другой. •Тоническая и генерализованная формы связаны с нижними отделами ствола головного мозга •Фазическая и локальная формы связаны с верхними отделами ствола, и прежде всего с неспецифической таламической системой. Неспецифические ядра таламуса, а также хвостатого тела и гиппокампа функционально тесно связаны с системой ориентировочного рефлекса. Второй источник активации тесно связан с механизмами памяти: •каждая реакция на новизну требует, прежде всего, сличения нового раздражителя с системой старых, уже ранее появлявшихся раздражителей -"компарация" •"компарация" позволяет установить, является ли данный раздражитель действительно новым и должен ли он вызывать ориентировочный рефлекс, или же он является старым и появление его не требует специальной мобилизации организма •такой механизм обеспечивает процесс "привыкания", когда многократно повторяющийся раздражитель теряет свою новизну и необходимость специальной мобилизации организма при его появлении исчезает •значительная часть нейронов гиппокампа и хвостатого тела, не имеющих модально-специфических функций, осуществляет функцию "компарации" сигналов, реагируя на появление новых раздражителей и выключая активность в условиях привыкания к ним. Активирующая и тормозящая (иначе говоря, модулирующая) функции нейронов гиппокампа и хвостатого тела оказались, как стало ясно в последние годы, важнейшим источником регуляции тонических состояний мозговой коры, которые связаны с наиболее сложными видами ориентировочного рефлекса, на этот раз носящими уже не врожденный, а более сложный, прижизненно возникающий или условно рефлекторный характер. 3. Третий источник активации человека - планы, перспективы и программы, которые формируются в процессе сознательной жизни людей. Они социальны по своему происхождению и осуществляются при ближайшем участии сначала внешней, а потом и внутренней речи: •всякий сформулированный в речи замысел вызывает целую программу действий, направленных к достижению этой цели •всякое достижение ее прекращает активность, в то время как обратное ведет к дальнейшей мобилизации усилий Было бы неправильно считать возникновение таких намерений и формулировку целей чисто интеллектуальным актом. Осуществление замысла, достижение цели требуют известной энергии и могут быть обеспечены лишь при наличии достаточного уровня активности. Мозговой аппарат, лежащий в основе этой активности (наиболее существенной для понимания сознательного поведения человека), оставался долгое время неизвестным, и только в последние годы был сделан существенный шаг к его выявлению. В поисках механизмов этих наиболее высоких форм организации активности следует сохранить вертикальный принцип строения функциональных систем мозга, т.е. обратиться к тем связям, которые существуют между высшими отделами коры и нижележащей РФ. Выяснено, что посредством кортикоретикулярных путей раздражение отдельных участков коры может вызывать: •генерализованную реакцию пробуждения •оказывать облегчающее влияние на специальные рефлексы •изменять возбудимость мышц •понижать пороги различительной чувствительности •обусловливать ряд других изменений Таким образом, с достаточной надежностью установлено: •наряду со специфическими сенсорными и двигательными функциями, кора головного мозга осуществляет и неспецифические активирующие функции •каждое специфическое афферентное или эфферентное волокно сопровождается волокном неспецифической активирующей системы и что раздражением определенных участков коры можно вызвать как активирующие, так и тормозящие влияния на нижележащие нервные образования •нисходящие волокна активирующей (и тормозящей) РФ имеют достаточно дифференцированную корковую организацию, и если наиболее специфические пучки этих волокон (повышающих или понижающих тонус сенсорных или двигательных аппаратов) исходят из первичных (и частично вторичных) зон коры, то более общие активирующие влияния на РФ ствола исходят прежде всего из лобных отделов коры •нисходящие волокна, идущие от префронтальной коры к ядрам зрительного бугра и нижележащих стволовых образований - являются тем аппаратом, посредством которого высшие отделы мозговой коры (непосредственно участвующие в формировании намерений и планов) вовлекают в это и нижележащие аппараты РФ таламуса и ствола, тем самым модулируя их работу и обеспечивая наиболее сложные формы сознательной деятельности Все это показывает, что аппараты первого функционального блока не только тонизируют кору, но и сами испытывают ее дифференцирующее влияние и что первый функциональный блок мозга работает в тесной связи с высшими отделами коры.

  1. Второй блок мозга, понятие первичных, вторичных и третичных полей, принципы работы второго блока.

БЛОК ПРИЕМА, ПЕРЕРАБОТКИ И ХРАНЕНИЯ ИНФОРМАЦИИ Этот блок расположен в конвекситальных (наружных) отделах новой коры (неокортекса) и занимает ее задние отделы, включая в свой состав аппараты: •зрительной (затылочной) области •слуховой (височной) области •общечувствительной (теменной) области По своему гистологическому строению он состоит не из сплошной нервной сети, а из изолированных нейронов, которые составляют толщу мозговой коры располагаясь в шести слоях. В отличие от аппаратов первого блока работают не по принципу градуальных изменений, а по закону "все или ничего", принимая отдельные импульсы и передавая их на другие группы нейронов. По своим функциональным особенностям аппараты этого блока приспособлены к приему раздражителей, доходящих до головного мозга от периферических рецепторов, к дроблению их на огромное число составляющих элементов (анализу на мельчайшие составляющие детали) и к их комбинации в нужные динамические функциональные структуры (к образованию целых функциональных систем). Этот блок состоит из частей, обладающих высокой модальной специфичностью. Входящие в его состав части приспособлены к тому, чтобы принимать информацию: •зрительную •слуховую •вестибулярную •общечувствительную В этот блок включаются также центральные аппараты вкусовой и обонятельной рецепции, хотя у человека они настолько оттесняются центральным представительством высших экстероцептивных, дистантных анализаторов, что занимают в пределах коры головного мозга очень незначительное место. Основу этого блока образуют первичные или проекционные зоны коры, состоящие главным образом из нейронов 4-го афферентного слоя, значительная часть которых обладает высочайшей специфичностью. Естественно, что такие высочайшие по своей дифференцированнее нейроны сохраняют строгую модальную специфичность, и в первичной затылочной коре нельзя найти клеток, которые реагировали бы на звук, так же как и в первичной височной коре мы не обнаружили клеток, которые реагировали бы на зрительные раздражители. Следует, однако, отметить, что первичные зоны отдельных областей коры, входящих в состав этого блока, включают в свой состав: •клетки мультимодального характера, реагирующие на несколько видов раздражителей •клетки, не реагирующие на какой-либо модально-специфический тип раздражителей и, по-видимому, сохраняющие свойства неспецифического поддержания тонуса Однако эти клетки составляют лишь очень небольшую часть всего нейронного состава первичных зон коры (по некоторым данным - не превышают 4% общего состава всех клеток). ДАЛЕЕ…Первичные, или проекционные, зоны коры названного блока мозга составляют основу его работы. Они окружены надстроенными над ними аппаратами вторичных (или гностических) зон коры, в которых 4-й афферентный слой уступает ведущее место 2-му и 3-му слоям клеток, не имеющим столь выраженной модальной специфичности. Эти слои в значительно большей степени включают в свой состав ассоциативные нейроны с короткими аксонами, позволяющие комбинировать поступающие возбуждения в те или иные функциональные узоры и осуществляющие, таким образом, синтетическую функцию. Подобное иерархическое строение в одинаковой степени свойственно всем областям коры, включенным во второй блок мозга. Таким образом, основные, модально-специфические зоны второго блока мозга построены по единому принципу иерархической организации, который одинаково сохраняется во всех этих зонах. Каждая из них должна рассматриваться как центральный, корковый аппарат того или иного модально-специфического анализатора. Все они приспособлены для того, чтобы служить аппаратом приема, переработки и хранения поступающей из внешнего мира информации, или, иначе говоря, мозговыми механизмами модально-специфических форм познавательных процессов. ДАЛЕЕ… Однако познавательная деятельность человека никогда не протекает, опираясь лишь на одну изолированную модальность (зрение, слух, осязание). Любое предметное восприятие - и тем более представление - системно, оно является результатом полимодальной деятельности, которая носит сначала развернутый, а затем свернутый характер. Поэтому совершенно естественно, что она должна опираться на совместную работу целой системы зон коры головного мозга. Функцию обеспечения такой совместной работы целой группы анализаторов несут третичные зоны второго блока: зоны перекрытия корковых отделов различных анализаторов, расположенные на границе затылочной, височной и задне-центральной коры - образования нижнетеменной области, которая у человека развилась настолько, что составляет едва ли не четвертую часть всех образований описываемого блока. Именно это дает основание считать третичные зоны (или как их обозначал П. Флексиг, "задний ассоциативный центр") специфически человеческими образованиями. Эти третичные зоны задних отделов мозга состоят преимущественно из клеток 2-го и 3-го (ассоциативных) слоев коры и, следовательно, почти нацело осуществляют функцию интеграции возбуждений, приходящих из разных анализаторов. Есть основания думать, что подавляющее большинство нейронов этих зон имеют мультимодальный характер и, по некоторым данным, реагируют на такие обобщенные признаки, на которые не могут реагировать нейроны первичных и даже вторичных зон коры. !!! На основании анализа психологических экспериментов и клинических данных показано, что основная роль этих зон связана: •с пространственной организацией притекающих в различные сферы возбуждений •в превращении последовательно поступающих (сукцессивных) сигналов в одновременно обозримые (симультанные) группы Такая работа третичных зон задних отделов коры необходима не только для успешного синтеза доходящей до человека наглядной информации, но и для перехода от непосредственных, наглядных синтезов к уровню символических процессов - для операций значениями слов, сложными грамматическими и логическими структурами, системами чисел и отвлеченных соотношений. Именно в силу этого третичные зоны задних отделов коры являются аппаратами, участие которых необходимо для превращения наглядного восприятия в отвлеченное мышление, всегда протекающее в известных внутренних схемах, и для сохранения в памяти материала организованного опыта, иначе говоря - не только для получения и кодирования (переработки), но и для хранения полученной информации. Все это и дает основание обозначить весь этот функциональный блок мозга как блок получения, переработки и хранения информации. Можно выделить три основных закона, по которым построена работа отдельных частей коры, входящих в состав этого мозгового блока. Первый закон закон иерархического строения входящих в состав этого блока корковых зон. Соотношение первичных, вторичных и третичных зон коры, осуществляющих все более сложные синтезы доходящей до человека информации, является иллюстрацией этого закона. Следует, однако, отметить, что отношения этих зон коры не остаются одинаковыми, а изменяются в процессе онтогенетического развития. Второй закон - закон убывающей специфичности иерархически построенных зон коры, входящих в его состав: •Первичные зоны обладают максимальной модальной специфичностью •Вторичные зоны коры обладают модальной специфичностью в значительно меньшей степени. Сохраняя свое непосредственное отношение к корковым отделам соответствующих анализаторов, эти зоны сохраняют свои модально-специфические гностические функции, интегрируя в одних случаях зрительную, в других случаях – слуховую, в третьих случаях - тактильную информацию. •Третичные зоны описываемого блока в еще меньше степени обладают модальной специфичностью; эти зоны обозначаются как зоны перекрытия корковых отделов различных анализаторов; эти зоны осуществляют симультанные (пространственные) синтезы, что делает практически почти невозможным говорить о том, какой модально-специфический (зрительный или тактильный) характер они имеют. Третий (основной) закон - закон прогрессивной латерализации функций, вступающих в действие по мере перехода от первичных зон мозговой коры к вторичным и затем третичным зонам. Известно, что первичные зоны обоих полушарий мозговой коры, построенных по принципу соматотопической проекции, равноценны. Каждая из них является проекцией контрлатеральных (расположенных на противоположной стороне) воспринимающих поверхностей, и ни о каком доминировании первичных зон какого-либо одного из полушарий говорить нельзя. Иначе обстоит дело при переходе к вторичным, а затем и третичным зонам, где возникает известная латерализация функций, не имеющая места у животных, но характерная для функциональной организации человеческого мозга. Левое полушарие (у правшей) становится доминантным. Именно оно начинает осуществлять речевые функции, в то время как правое полушарие, не связанное с деятельностью правой руки и речью, остается субдоминантным.

  1. Третий блок мозга, его функциональная нагрузка.

БЛОК ПРОГРАММИРОВАНИЯ, РЕГУЛЯЦИИ И КОНТРОЛЯ ДЕЯТЕЛЬНОСТИ Третьим функциональным блоком мозга (блоком программирования, регуляции и контроля) обеспечивается организация активной, сознательной, целенаправленной деятельности. Человек не только пассивно реагирует на доходящие до него сигналы. Он: создает замыслы •формирует планы и программы своих действий •следит за их выполнением •регулирует свое поведение, приводя его в соответствие с планами и программами •контролирует свою сознательную деятельность, сличая эффект действий с исходными намерениями и корригируя допущенные ошибки. Этим задачам и служат аппараты третьего блока головного мозга, расположенные в передних отделах больших полушарий - впереди от передней центральной извилины. Выходными воротами этого блока служит двигательная зона коры (4-е поле Бродмана), 5-й слой которой содержит гигантские пирамидные клетки Беца. Волокна от них идут к двигательным ядрам спинного мозга, а оттуда к мышцам, составляя части большого пирамидного пути. ДАЛЕЕ…Проекционная двигательная кора не может, однако, функционировать изолированно. Все движения человека в той или иной степени нуждаются в известном тоническом фоне, который обеспечивается базальными двигательными узлами и волокнами экстрапирамидной системы. ДАЛЕЕ…Первичная (проекционная) двигательная кора является, как уже сказано, выходными воротами двигательных импульсов ("передними рогами головного мозга", как назвал их Н.А. Бернштейн). ДАЛЕЕ…Естественно, что двигательный состав импульсов, посылаемых на периферию, должен быть хорошо подготовлен, включен в известные программы, и только после такой подготовки импульсы, направленные через переднюю центральную извилину, могут обеспечить нужные целесообразные движения. Такая подготовка двигательных импульсов не может быть выполнена самими пирамидными клетками. Она должна быть обеспечена: •как в аппарате передней центральной извилины •так и в аппаратах надстроенных над ней вторичных зон двигательной коры, которые готовят двигательные программы, лишь затем передающиеся на гигантские пирамидные клетки. В пределах самой передней центральной извилины таким аппаратом, участвующим в подготовке двигательных программ для передачи их на гигантские пирамидные клетки, являются верхние слои коры и внеклеточное серое вещество, составленное из элементов дендритов и глии. Отношение массы этого внеклеточного серого вещества к массе клеток передней центральной извилины резко возрастает по мере эволюции..., так что величина его у человека вдвое больше, чем у высших, и почти в пять раз больше, чем у низших обезьян. Это означает, что по мере перехода к высшим ступеням эволюционной лестницы и особенно по мере перехода к человеку двигательные импульсы, генерируемые гигантскими пирамидными клетками Беца, должны становиться все более управляемыми, и именно эта управляемость обеспечивается мощно возрастающими аппаратами внеклеточного серого вещества, состоящего из дендритов и глии. ДАЛЕЕ…Передняя центральная извилина является, однако, лишь проекционной зоной, исполнительным аппаратом мозговой коры. Решающее значение в подготовке двигательных импульсов имеют надстроенные над ней вторичные и третичные зоны, так же подчиняющиеся принципам иерархического строения и убывающей специфичности, как и организация блока приема, переработки и хранения информации. Но ее основные отличия от второго (афферентного) блока заключается в том, что: процессы здесь идут в нисходящем направлении, начинаясь с наиболее высоких - третичных и вторичных зон, где формируются двигательные планы и программы, и лишь затем переходя к аппаратам первичной двигательной зоны, которая посылает подготовленные двигательные импульсы на периферию •этот блок сам не содержит набора модально-специфических зон, представляющих отдельные анализаторы, а состоит целиком из аппаратов эфферентного (двигательного) типа и сам находится под постоянным влиянием аппаратов афферентного блока. Роль основной зоны блока играют премоторные отделы лобной области. Раздражение этих отделов коры вызывает не соматотопически ограниченные вздрагивания отдельных мышц, а целые комплексы движений, имеющих системно организованный характер (повороты глаз, головы и всего тела, хватательные движения рук), что уже само по себе указывает на интегративную роль этих зон коры в организации движений. Следует отметить также, что если раздражение передней центральной извилины вызывает ограниченное возбуждение, распространяющееся лишь на близлежащие точки, то раздражение премоторных отделов коры распространяется на достаточно отдаленные участки, включающие и постцентральные зоны, и, наоборот, сами участки премоторных зон возбуждаются под влиянием раздражения далеко расположенных от них участков афферентных отделов коры. Все эти факты дают полное основание отнести премоторные зоны к вторичным отделам коры и высказать предположение, что они осуществляют в отношении движений такую же организующую функцию, какую выполняют вторичные зоны задних отделов коры, превращающие соматотопическую проекцию в функциональную организацию. ДАЛЕЕ…Наиболее существенной частью третьего функционального блока мозга являются, однако, лобные доли, или, если выражаться точнее, префронтальные отделы мозга. Именно эти разделы мозга, относясь к третичным зонам коры, играют решающую роль в: •формировании намерений и программ. •регуляции и контроле наиболее сложных форм поведения человека Особенностью данной области мозга является ее богатейшая система связей как с нижележащими отделами мозга (медиальными ядрами, подушкой зрительного бугра и другими образованиями) и соответствующими отделами РФ, так и со всеми остальными отделами коры. Эти связи носят двусторонний характер и делают префронтальные отделы коры образованиями, находящимися в особенно выгодном положении как для приема и синтеза сложнейшей системы афферентаций, идущих от всех отделов мозга, так и для организации эфферентных импульсов, позволяющих оказывать регулирующие воздействия на все эти структуры. Решающее значение имеет тот факт, что лобные доли мозга, и в частности их медиальные и базальные отделы: •обладают особенно мощными пучками восходящих и нисходящих связей с РФ и получают мощные импульсы от систем первого функционального блока, "заряжаясь" от него соответствующим энергетическим тонусом •вместе с тем они могут оказывать особенно мощное модулирующее влияние на РФ, придавая ее активирующим импульсам известный дифференцированный характер и приводя их в соответствие с динамическими схемами поведения, которые непосредственно формируются в лобной коре мозга. ДАЛЕЕ…Было установлено, что префронтальные отделы коры действительно играют существенную роль в регуляции состояния активности, меняя его в соответствии с наиболее сложными, формулируемыми с помощью речи намерениями и замыслами человека. Следует отметить, что эти отделы мозговой коры созревают лишь на очень поздних этапах онтогенеза и становятся окончательно подготовленными к действию лишь у ребенка 4-7-летнего возраста. Темп роста площади лобных областей мозга резко повышается к 3,5-4 годам и испытывает затем второй скачок к 7-8-летнему возрасту. К первому из этих периодов относится и существенный скачок роста клеточных тел, входящих в состав префронтальных отделов коры.В филогенезе эти отделы мозга получают мощное развитие лишь на самых поздних этапах эволюции. У человека они занимают до 1/3 всей массы мозга и имеют помимо указанных и другие функции, более непосредственно связанные с организацией активной деятельности людей. Эти отделы двусторонне связаны не только с нижележащими образованиями ствола и промежуточного мозга, но и со всеми остальными отделами коры больших полушарий. Отмечены богатейшие связи лобных долей как с затылочными, височными, теменными областями, так и с лимбическими отделами коры. ДАЛЕЕ…(in summa summarum) Таким образом, то, что префронтальные отделы коры являются третичными образованиями, стоящими в теснейшей связи почти со всеми основными зонами коры головного мозга, не вызывает сомнений. И их отличие от третичных зон задних отделов заключается лишь в том, что третичные отделы лобных долей фактически надстроены над всеми отделами мозговой коры, осуществляя, таким образом, гораздо более универсальную функцию общей регуляции поведения, чем та, которую имеет "задний ассоциативный центр", или, иначе говоря, третичные поля второго (ранее описанного) блока.

ВЗАИМОДЕЙСТВИЕ ТРЕХ ОСНОВНЫХ ФУНКЦИОНАЛЬНЫХ БЛОКОВ МОЗГА Было бы неправильно предполагать, что каждый из описанных блоков может самостоятельно осуществлять ту или иную форму деятельности. Любая сознательная деятельность, как уже неоднократно отмечалось, всегда является сложной функциональной системой и осуществляется, опираясь на совместную работу всех трех блоков мозга, каждый из которых вносит свой вклад в ее осуществление. Современные представления о строении психических процессов исходят из модели "рефлекторного кольца" или сложной саморегулирующейся системы, каждое звено которой включает как афферентные, так и эффекторные компоненты, а все звенья этой системы в целом носят характер сложной и активной психической деятельности. Было бы неверно, например, представлять ощущение и восприятие как чисто пассивные процессы. Известно, что уже в ощущение включены двигательные компоненты, и современная психология представляет ощущение, а тем более восприятие как рефлекторный акт, включающий как афферентное, так и эфферентное звено. Чтобы убедиться в сложном активном характере ощущений, достаточно напомнить, что даже у животных оно включает как необходимое звено отбор биологически значимых признаков, а у человека - и активное кодирующее влияние языка. Особенно отчетливо выступает активный характер сложного предметного восприятия. Хорошо известно, что предметное восприятие носит не только полирецепторный характер, что оно, опираясь на совместную работу целой группы анализаторов, всегда имеет в своем составе и активные двигательные компоненты. Решающую роль движений глаз в зрительном восприятии отмечал еще И.М. Сеченов, но экспериментально доказано это было лишь в последнее время рядом психофизиологических исследований, показавших, что: •неподвижный глаз практически не может устойчиво воспринимать комплексные предметы •сложное предметное восприятие всегда предполагает использование активных, поисковых движений глаз, выделяющих нужные признаки и лишь постепенно принимающих свернутый характер. Все эти факты делают очевидным, что восприятие осуществляется при совместном участии всех трех функциональных блоков мозга, из которых: •первый - обеспечивает нужный тонус коры •второй - дает возможность анализа и синтеза поступающей информации •третий – формирует необходимые направленные поисковые движения Последнее придает активный характер воспринимающей деятельности человека в целом. Аналогичное можно сказать и о построении произвольных движений и действий. Участие эфферентных механизмов в построении движения самоочевидно. Однако, движение не может управляться одними эфферентными импульсами. Для его организованного выполнения необходимы постоянные афферентные импульсы, сигнализирующие состояние сочленений и мышц, положение сегментов движущегося аппарата и те пространственные координаты, в которых движение протекает. Все это делает понятным, что произвольное движение, а тем более предметное действие опираются на совместную работу самых различных отделов мозга: •если аппараты первого блока обеспечивают нужный тонус мышц, без которого никакое координированное движение не было бы возможным •то аппараты второго блока позволяют осуществить те афферентные синтезы, в системе которых протекает движение •а аппараты третьего блока обеспечивают подчинение движения и действия соответствующим намерениям, способствуют созданию программы выполнения двигательных актов и осуществляют как регуляцию движений, так и контроль над ними, без чего не может сохраниться организованный, осмысленный характер двигательных и любых других действий. Все это делает очевидным, что только учет взаимодействия всех трех функциональных блоков мозга, их совместной работы и того, каков специфический вклад каждого из них в отражательную деятельность мозга, позволяет правильно решать вопрос о мозговых механизмах психической деятельности.