Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
История математики.docx
Скачиваний:
44
Добавлен:
06.07.2022
Размер:
1.92 Mб
Скачать
  1. История возникновения комплексных чисел

Древнегреческие математики считали “настоящими” только натуральные числа. Постепенно складывалось представление о бесконечности множества натуральных чисел.

Наряду с натуральными числами применяли дроби - числа, составленные из целого числа долей единицы. В практических расчетах дроби применялись за две тысячи лет до н. э. в древнем Египте и древнем Вавилоне. Долгое время полагали, что результат измерения всегда выражается или в виде натурального числа, или в виде отношения таких чисел, то есть дроби. Древнегреческий философ и математик Пифагор учил, что «элементы чисел являются элементами всех вещей и весь мир в целом является гармонией и числом» [1]. Сильнейший удар по этому взгляду был нанесен открытием, сделанным одним из пифагорейцев. Он доказал, что диагональ квадрата несоизмерима со стороной. Отсюда следует, что натуральных чисел и дробей недостаточно, для того чтобы выразить длину диагонали квадрата со стороной 1. Есть основание утверждать, что именно с этого открытия начинается эра теоретической математики: открыть существование несоизмеримых величин с помощью опыта, не прибегая к абстрактному рассуждению, было невозможно. Следующим важным этапом в развитии понятия о числе было введение отрицательных чисел – это было сделано китайскими математиками во II веке до н. э. Отрицательные числа применял в III веке древнегреческий математик Диофант, знавший уже правила действия над ними, а в VII веке эти числа уже подробно изучили индийские ученые, которые сравнивали такие числа с долгом. С помощью отрицательных чисел можно было единым образом описывать изменения величин. Уже в VIII веке было установлено, что квадратный корень из положительного числа имеет два значения - положительное и отрицательное, а из отрицательных чисел квадратный корень извлекать нельзя.

Понадобился гений Эйлера, чтобы признать мнимые числа настоящими числами и распространить вычисление с этими числами на все разделы математики. Именно Эйлеру и принадлежит гениальная догадка о том, что комплексные числа являются алгебраически замкнутыми относительно всех алгебраических операций. То есть не существует таких алгебраических операций над комплексными числами, которые невозможно было бы сделать не выходя за рамки комплексных чисел.

  1. Математика Средневековья

Средняя Азия (Китай, Вавилон, Египет)

В Западной Европе математика не имеет столь древнего происхождения, как в странах Ближнего и Дальнего Востока. Заметные успехи появились тут лишь в эпоху позднего Средневековья и особенно Возрождения. А основной организационной предпосылкой развития математики в Европе стало открытие учебных заведений (искусствоведческий факультет включал математику)

  1. Апории Зенона

Апории Зенона — внешне парадоксальные рассуждения на тему о движении и множестве древнегреческого философа Зенона Элейского

Наиболее известными и важными для математики стали сформулированные Зеноном четыре апории (т. е. парадокса), направленных против существования движения.

  1. Деление пополам. Движущееся тело никогда не достигнет конца пути, потому что оно сначала должно дойти до середины пути, потом до середины оставшегося пути, потом опять до середины остатка и т. д. – таким образом, прежде чем дойти до конца пути, тело должно пройти бесконечное множество середин, а это потребует бесконечного времени.

  2. Ахиллес и черепаха. Быстроногий Ахиллес никогда не сможет догнать медлительной черепахи, если в начале движения она находится на некотором расстоянии впереди Ахиллеса: пока Ахиллес достигнет черты, с которой стартовала черепаха, она сама проползет на некоторое расстояние, пусть и меньшее; пока Ахиллес пробежит это расстояние, черепаха продвинется еще дальше, и т. д.

  3. Стрела. В каждый момент времени летящая стрела занимает равное самой себе пространство. Следовательно, она в течение некоторого времени покоится. Таким образом, она и вовсе не движется.

  4. Стадион. По стадиону мимо группы равных тел А1, А2, А3, А4 движутся в противоположные стороны с одинаковыми скоростями еще две такие же группы – В1, В2, В3, В4 и Г1, Г2, Г3, Г4. Раз они движутся с равной скоростью, то в равное время пройдут равное расстояние. Если за некоторое время первое из тел В пройдет мимо всех Г, то за это же время первое из тел Г пройдет мимо половины тел А, а значит, оно пройдет лишь половину того расстояния, который прошло тело В, а значит – так как В и Г движутся с равными скоростями – оно прошло и половину того времени, за которое тело В прошло все тела Г. С другой стороны, за одно и то же время первое из тел Г пройдет мимо всех В, а первое из В пройдет лишь половину тел А, и значит, в два раза меньшее расстояние, затратив в два раза меньшее время, чем тело Г, прошедшее все тела В. Получается, что одно и то же время и вдвое длиннее, и вдвое короче, чем оно же само.

  1. Идеи бесконечности и непрерывности в Древней Греции

Удар по пифагореизму нанёс Зенон Элейский, предложив ещё одну тему для многовековых размышлений математиков. Он высказал более 40 парадоксов (апорий), из которых наиболее знамениты три апории о движении. Вопреки многократным попыткам их опровергнуть и даже осмеять, они, тем не менее, до сих пор служат предметом серьёзного анализа. В них затронуты самые деликатные вопросы оснований математики — конечность и бесконечность, непрерывность и дискретность. Математика тогда считалась средством познания реальности, и суть споров можно было выразить как неадекватность непрерывной, бесконечно делимой математической модели физически дискретной материи