
- •А.Кожуркин
- •7.4 Энергообеспечение динамической работы при подтягивании. 27
- •7.5 Оценка уровня развития силовых способностей по внешним признакам. 31
- •7.7 Условия для повышения динамических силовых способностей 38 Глава 7. Развитие динамической силовой выносливости мышц, участвующих в подтягивании.
- •7.1 Мышцы, производящие подъём/опускание туловища.
- •7.2 Строение мышечных волокон и механизм мышечных сокращений
- •7.2.1 Строение и химический состав скелетных мышц
- •7.2.1.1 Митохондрии
- •7.2.1.2 Миофибриллы
- •7.2.2 Механизм мышечного сокращения.
- •7.2.3 Изменение величины силы в фазе подъёма
- •7.3 Изменения в мышечных волокнах под влиянием различных тренировочных воздействий.
- •7.3.1 Особенности различных типов мышечных волокон
- •7.3.2 Увеличение количества миофибрилл в быстрых мышечных волокнах
- •1 Подтягивание с большими грузами.
- •2 Подтягивание с цепью.
- •3 Интервальная тренировка с отягощением.
- •7.3.3 Увеличение количества митохондрий в быстрых мышечных волокнах
- •1 Подтягивание со спрыгиванием.
- •2 Подтягивание в сверхнизком темпе.
- •3 «Лесенки» и «пирамиды».
- •7.3.4 Параллельное увеличение количества митохондрий и миофибрилл в быстрых мышечных волокнах
- •7.3.5 Увеличение количества миофибрилл в медленных мышечных волокнах
- •1 Увеличение силы мышц-сгибателей пальцев.
- •2 Развитие силы ммв мышц, выполняющих подъём туловища.
- •7.3.6 Увеличение количества митохондрий в медленных мышечных волокнах
- •7.3.7 Схема изменений в мышечных волокнах под воздействием нагрузки.
- •7.4 Энергообеспечение динамической работы при подтягивании.
- •7.4.1 Энергообеспечение динамической работы при подтягивании в оптимальном соревновательном темпе
- •7.4.2 Энергообеспечение динамической работы при подтягивании в низком темпе
- •7.4.3 Энергообеспечение динамической работы при подтягивании в повышенном темпе
- •7.4.4 Энергообеспечение динамической работы при подтягивании в максимальном темпе
- •7.5 Оценка уровня развития силовых способностей по внешним признакам.
- •7.6 Динамические силовые способности и результат в подтягивании.
- •7.7 Условия для повышения динамических силовых способностей
- •7.10.1 Особенности построения тренировочной нагрузки.
- •7.10.5 Краткое описание тренировочного процесса с применением повторно-серийного метода.
- •7.10.6 Модификация повторно-серийного метода.
- •7.10.7 Пример тренировки повторно-серийным методом с большими грузами и использованием режима «отдых-пауза».
- •7.11 Классификация отказов при подтягивании на перекладине.
7.4.2 Энергообеспечение динамической работы при подтягивании в низком темпе
Темп подтягиваний будем считать низким, если уровень развития аэробных возможностей мышц спортсмена превышает уровень, необходимый для поддержания выбранного темпа выполнения упражнения.
Допустим, что спортсмен выполняет подтягивания в низком темпе. Первое подтягивание производится за счёт запасов АТФ в мышечных клетках, которых достаточно для мышечной работы в течение 1-2 секунд. Для дальнейшего выполнения работы по подъёму/опусканию туловища должно производиться восполнение запасов АТФ за счёт быстрой креатинфосфатной реакции, во время которой имеющийся в мышечных клетках креатинфосфат вступает во взаимодействие с АДФ (образовавшейся ранее при расщеплении АТФ) с образованием креатина и АТФ. Несколько первых подтягиваний – пока ещё не включился гликолитический механизм ресинтеза - происходят при непрерывном снижении запасов креатинфосфата, но постепенно разворачивающийся гликолиз (время выхода на максимальную мощность которого составляет около 30 секунд) начинает ресинтезировать в единицу времени всё большее количество молекул АТФ, в связи с чем скорость снижения запасов креатинфосфата начинает уменьшаться. Поскольку темп выполнения подтягиваний невысок, скорость образования лактата в мышцах также невелика, поэтому аэробный механизм энергопродукции успевает развернуться раньше, чем произойдёт «закисление» мышц. Если максимальная мощность энергопродукции механизма аэробного окисления достаточно высока, подтягивание переходит в относительно спокойное русло, когда спортсмен длительное время (по меркам подтягиваний) поддерживает ритм выполнения упражнения в режиме «1 подтягивание на 2 цикла дыхания». При этом если за счёт тканевого дыхания в паузе отдыха в висе синтезируется такое количество АТФ, что его хватает не только на обеспечение сокращений мышц, но и на частичное восполнение запасов креатинфосфата, спортсмен не будет испытывать трудностей в верхней части траектории движения и подтягивания будут производиться в течение всех 4 минут. Образовавшийся кислородный долг при этом будет невелик и спортсмену потребуется немного времени на то, чтобы восстановить дыхание после окончания подтягиваний.
Таким образом, при выполнении подтягиваний в медленном темпе аэробное окисление успевает выйти на максимальный уровень энергопродукции, и в этом случае подтягивание в целом производится в смешанном аэробно-анаэробном режиме.
7.4.3 Энергообеспечение динамической работы при подтягивании в повышенном темпе
Темп подтягиваний будем считать повышенным, если уровень развития аэробных возможностей мышц спортсмена недостаточен для поддержания выбранного темпа выполнения упражнения.
При подтягивании в повышенном темпе происходит следующее. Первое подтягивание выполняется за счёт запасов АТФ, имеющегося в мышечной ткани, вследствие чего концентрация АТФ уменьшается, а концентрация АДФ – увеличивается. Включается анаэробный креатинфосфатный механизм ресинтеза АТФ. В последующие 15-20 секунд подтягивание выполняется при непрерывном уменьшении запасов креатинфосфата. Снижение концентрации креатинфосфата приводит к тому, что в мышечных волокнах снижается уровень АТФ и повышается уровень АДФ. В результате этого и других процессов, происходящих в мышечных волокнах в начальный период работы (которые подробно описаны, например, в [24]), запускается следующий анаэробный механизм ресинтеза АТФ – гликолитический. В ходе гликолиза образуется молочная кислота, которая вследствие повышенного темпа выполнения подтягиваний (малых интервалов отдыха в висе в ИП) будет накапливаться в работающих мышцах во всю больших количествах. При этом концентрация креатинфосфата продолжает снижаться, поскольку гликолитические реакции при выбранном темпе выполнения упражнения не могут обеспечить ресинтез всей расходуемой АТФ, а механизм аэробного окисления ещё не успел выйти на максимальную мощность.
В итоге, поддержание темпа подтягиваний, не соответствующего уровню физической работоспособности спортсмена, приводит к печальным последствиям. Ещё то того, как механизм аэробного окисления начал бы играть существенную роль в энергообеспечении мышечных сокращений, пониженное содержание креатинфосфата и АТФ с одной стороны и повышенное содержание молочной кислоты – с другой, приводят к тому, что спортсмен начинает испытывать значительные трудности при прохождении верхнего участка траектории движения. «Зависание» на верхнем участке ещё больше усугубляет ситуацию, вызывая лавинообразное нарастание утомления, в результате чего спортсмен оказывается не в состоянии вытянуть очередное подтягивание и вынужден подолгу отдыхать в висе в ИП, чтобы восстановить силовые способности до уровня, который позволит выполнить подъём туловища. Как-то раз на городских соревнованиях доводилось наблюдать за спортсменом, который 6(!) раз подряд пытался дотянуться подбородком до грифа, но так и не смог этого сделать, каждый раз «зависая» всё раньше и раньше.
Таким образом, при повышенном темпе выполнения подтягиваний «закисление» мышц возникает ещё до того, как механизм аэробного окисления успевает выйти на максимальный уровень энергопродукции, т.е. в этом случае гликолиз является ведущим механизмом ресинтеза АТФ.
При этом спортсмен интенсивно дышит, что не помогает, т.к. несмотря на то, что кислород в мышцы поступает, он не может использоваться во-первых, вследствие низкой активности аэробного окисления в начальной части выполнения упражнения и, во-вторых – из-за накопления лактата в мышечных клетках и (связанного с этим) снижения сократительной способности мышц вследствие повышения кислотности.