
- •1.Множества; определение, способы задания, операции над ними.
- •2. Абсолютная величина действительного числа. Окрестность точки.
- •3. Понятие функции, основные свойства
- •4. Основные элементарные функции
- •5.Числовая последовательности и ее предел.
- •6. Предел функции в бесконечности и в точке
- •7.8. Бесконечно малые и бесконечно большие величины ,определение и свойства
- •Свойства бесконечно малых
- •9. Основные теоремы о пределах
- •10. Некоторые признаки существования предела функции
- •11. Замечательные пределы
- •12.Понятие непрерывности функции.Свойства непрерывных функций. Непрерывность функции.
- •13. Задачи приводящие к понятию производной.
- •14. Определение производной зависимость между непрерывностью и диффериенциромостью функции Понятие производной
- •15..Основные правила дифференцирования. Производные элементарных функций. Правила дифференцирования
- •16.Правило Лопиталя
- •17. Возрастание и убывание функции
- •18.Экстремумы функции
- •2) Необходимый признак экстремума
- •3) Достаточные признаки эктремума
- •19. Определение наибольшего и наименьшего значения функции в замкнутой области.
- •Нахождение наибольшего и наименьшего значения на границе области д.
- •20.Выпуклость функции.Точки перегиба
- •21.Ассимптоты графика функции
- •23.24. Первообразная функции и неопределенный интеграл Свойства неопределенного интеграла
- •25. Метод интегрирования по частям
- •27.Основные свойства определенного интеграла
- •28. Определенный интеграл как функция верхнего предела
- •29. Формула Ньютона-Лейбница
- •30. 31.32.33.Вычисление площадей плоских фигур, объемов тел вращения и длин дуг кривой.
- •34.Несобственные интегралы.
- •35. Дифференциальные уравнения. Основные понятия.
- •36. 39.40.Однородные линейные дифференциальные уравнения первого порядка.
- •38. Дифференциальные уравнения с разделяющимися переменными.
- •41.42. Дифференциальные уравнения второго порядка
- •43.44. Понятие числового ряда, сходимость
- •45. Признак Даламбера
- •46. Признак сравнения
- •47. Лейбница признак
- •48. Степенной ряд. Область сходимости степенного ряда
- •49. 50.51.52.Ряды Тейлора и Маклорена
- •53. Основные понятия функции нескольких переменных
- •55. Частные производные
- •Нахождение частных производных.
- •56. Диффиринциал функции
- •57. Градиент, производная по направлению
- •58. Экстремум функции многих переменных (необходимое и достаточное условия).
- •59. Наибольшее и наименьшее значения функции.
- •60.61.Комплексные числа. Тригонометрическая и показательная форма
19. Определение наибольшего и наименьшего значения функции в замкнутой области.
Пусть задана ф-я z=f(x,y) в замкнутой области Д.
F(x,y)=0 уравнение границы Д.
Требуется найти наибольшее и наименьшее значения ф-ции в этой области.
Эти значения функция может достигать либо в экстремальных точках внутри области, либо на границе области, поэтому решение задачи делится на 2 этапа:
1.Сначала находим стационарные точки внутри области. В этих тосках возможны экстремумы. Вычисляем зачение заданной функции в этой точке.
2.Определяем наиб. и наим. Значение функции на границе области.
3.Сравниваем полученное значение и выбираем наиб. и наим. знач.
Нахождение наибольшего и наименьшего значения на границе области д.
Пусть граница области имеет уравнение F(x,y)=0 y=y(x) на гр. обл. Д
z=f(x,y) = f[x,y(x)]=z(x) является сложной функцией.
Необходимо найти min и max z(x) на границе. Для этого надо найти экстремумы внутри области (достаточно найти точки, где возможны экстремумы и вычислить значение функции в этих точках).
20.Выпуклость функции.Точки перегиба
.Выпуклость, вогнутость и точки перегиба кривой.
График функции y=f(x) называется выпуклым на интервале (a; b), если он расположен ниже любой своей касательной на этом интервале. Г На рисунке показана кривая, выпуклая на (a; b) и вогнутая на (b; c). Рассмотрим достаточный признак, позволяющий установить, будет ли график функции в данном интервале выпуклым или вогнутым. Теорема. Пусть y=f(x) дифференцируема на (a; b). Если во всех точках интервала (a; b) вторая производная функции y = f(x) отрицательная, т.е. f ''(x) < 0, то график функции на этом интервале выпуклый, если же f''(x) > 0 – вогнутый. Доказательство.
Предположим для определенности, что
f''(x)
< 0 и докажем, что график функции
будет выпуклым. В Итак,
уравнение кривой имеет вид y
= f(x).
Обозначим
Разность
f(x) – f(x0)
преобразуем по теореме Лагранжа
Таким образом,
К
выражению, стоящему в квадратных
скобках снова применим теорему
Лагранжа:
следовательно,
Таким образом, любая точка кривой лежит ниже касательной к кривой при всех значениях x и x0 (a; b), а это значит, что кривая выпукла. Вторая часть теоремы доказывается аналогично. Точка графика непрерывной функции, отделяющая его выпуклую часть от вогнутой, называется точкой перегиба. Очевидно, что в точке перегиба касательная, если она существует, пересекает кривую, т.к. с одной стороны от этой точки кривая лежит под касательной, а с другой стороны – над нею.
Определим достаточные условия того, что данная точка кривой является точкой перегиба. Т Доказательство. Пусть f ''(x) < 0 при x < x0 и f ''(x) > 0 при x > x0. Тогда при x < x0 кривая выпукла, а при x > x0 – вогнута. Следовательно, точка A, лежащая на кривой, с абсциссой x0 есть точка перегиба. Аналогично можно рассматривать второй случай, когда f ''(x) > 0 при x < x0 и f ''(x) < 0 при x > x0. Таким образом, точки перегиба следует искать только среди таких точек, где вторая производная обращается в нуль или не существует. |
|