Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Navigation / Буклеты / NT_4000_Mathematical_Models_Technical_Description_eng

.pdf
Скачиваний:
140
Добавлен:
09.02.2015
Размер:
1.15 Mб
Скачать

References

67.Kostioukov A.A. Interaction of solids, moving in liquid. – S.-Petersburg:Shipbuilding, 1972.

68.Krutov V.I. Automatic regulation and control of explosion engines. Moscow:Mechanical engineering, 1989.

69.Laforce E., Vantorre M. Experimental determination and modelling of restricted water effects on bulkcarriers. Marine Simulation and Ship Manoeuvrability (The international conference MARSIM’96). Balkemaa, Rotterdam, 1996.

70.Lam W.C., Katagi T., Hasimoto T., Bakountouzis L.N. Simulation of transient behaviour of marine medium speed diesel engine. MCMC’94 (Manoeuvring And Control Of Marine Craft), Published by Maritime research center, Southampton institute, 1994.

71.Lammeren W.P.A., ManenJ.D., Oosterveld M.W.C. Wageningen B-Screw Series. – TSNAME, 1969, vol.77, p.269-318.

72.Lanchukovsky V.I., Kozminyh A.V. Automatized systems of control of ship diesel and gas-turbine propulsions. – Moscow:Transport,1990.

73.Landau L.D., Lifshits E.M. Theoretical physics. Vol. VI. Hydrodynamics. – Moscow:Science, 1988.

74.Lebedev E.P., Pershits R.Ya., Rusetsky A.A., Avrashkov N.S., Tarasiouk A.B. Ship active control means. – S.-Petersburg:Shipbuilding, 1969.

75.Leib G. – Hydromechanics. State technical publ., 1947.

76.Lugovsky V.V. Sea Dynamic. Leningrad:Shipbuilding, 1976.

77.Martinussen K. Shiphanding at low speed in deep and shallow water. Marine Simulation and Ship Manoeuvrability (The international conference MARSIM’96). Balkemaa, Rotterdam, 1996.

78.Mastushkin Yu.M. Controllability of fish ships. – Moscow:Light and food industry, 1981. – page 232.

79.Mastushkin Yu.M. Ship-to-ship hydrodynamic interaction at encounters and overtaking. – S.-Petersburg:Shipbuilding, 1987.

80.McGeorge H.D. Marine Auxiliary Machinery. 7 Rev.ed. Printed in Great Britain by Halnolls Ltd, Bodmin, Cornwall, 1995.

81.Millward A. The effect of water depth on hull form factor. Int. Shipbuild. Progr., 36, no 407 (1989) pp. 283-302, 1987.

82.Milne-Thomson L.M. Theoretical hydrodynamics. London, Macmillan and Co. LTD, New York, 1960.

83.Mirohin B.V., Zhinkin V.B., Zilman G.I. Ship theory. S.-Petersburg:Shipbuilding, 1989.

84.Miroshnikov A.*, Popova E.*, Rumyanzev S. Pareto optimal ship course keeping controller. MCMC2000 (5th IFAC Conference on Manoeuvring and Control of Marine Craft), Aalborg, Denmark, 2000.

85.Miroshnikov A.N., Rumyantsev S.N. Modelling of control systems of transport technical means. – S.-Petersburg:Elmor, 1999. – 224 p.

Chapter 6. List Of Obligatory Maneuvers at Mathematical Model Testing.

89

References

86.Molland A.F., Turnock S.R. Prediction of ship rudder-propeller interaction at low speeds and in four quadrants of operation. MCMC’94 (Manoeuvring And Control Of Marine Craft), Published by Maritime research center, Southampton institute, 1994.

87.Molland A.F., Turnock S.R., Wilson P.A. Performance of an enhanced rudder force prediction model in a ship manoeuvring simulator. Marine Simulation and Ship Manoeuvrability (The international conference MARSIM’96). Balkemaa, Rotterdam, 1996.

88.Motora S., Fujimo M. On the Measurement of Stability Derivatives of "Mariner" type Ship by Forced Yawing Technique. (University of Tokyo). 11th International towing tank Conference, 1966.

89.Nemzer A.I., Rusetsky A.A., Tumashik A.P. Determination of ship rudder lift. Shipbuilding, N 14, 1985.

90.Newman J.N. Marine hydrodinamics. The MIT press Cambridge, Massachusetts and London, England, 1977.

91.Newman J.N. The drift force and moment on ships in waves. Journal of ship research, vol. 11, number 1, pp. 51-60, 1967.

92.Nikolaev E., Inutina T., Lebedeva M. On Ship manoeuvrability estimation based on IMO resolution No.A.751(18). Marine Simulation and Ship Manoeuvrability (The international conference MARSIM’96). Balkemaa, Rotterdam, 1996.

93.Nonaka K., Nimura T., Haraguchi T., Ueno M. Measurements of stern flow field of a ship in oblique towing motion. Marine Simulation and Ship Manoeuvrability (The international conference MARSIM’96). Balkemaa, Rotterdam, 1996.

94.Norrbin N.H. Further notes on the dynamic stability parameter and the prediction of manoeuvring characteristics. Marine Simulation and Ship Manoeuvrability (The international conference MARSIM’96). Balkemaa, Rotterdam, 1996.

95.Okada S. On the result of experiment of rudders placed behind the vessel. Rep.of the Hitachi Shipbuilding co., 1959.

96.Oltmann P. and Sharma S. Simulation of Combined Engine and Rudder Maneuvers Using Improved Model of Hull-Propeller-Rudder Interactions. – 15th Symposium Naval Hydrodynamics, 1984.

97.Oltmann P. On the influence of speed on the manoeuvring behaviour of a container carrier. Marine Simulation and Ship Manoeuvrability (The international conference MARSIM’96). Balkemaa, Rotterdam, 1996.

98.Ovsyannikov M.K., Petuhov V.A. Ship automatized propulsion units. Moscow:Transport, 1989.

99.Parker M.N. The B. S. R. A. Methodical series – an overall Presentation. Propulsion Factors // Transactions of Royal Institution of Naval Architects. 1966. 108. №4. 389-399.

100.Pershits R.Ya. Controllability and ship control, – S.-Petersburg:Shipbuilding, 1983.

101.Pershits R.Ya. Controllability at transportation of large constructions in narrowness, – S.-Petersburg:Shipbuilding, №19, 1989.

102.Plammer C.J. Ship Handling in Narrow Channels. Cambridge: Cornell Maritime Press, 1966.

90 NAVI-TRAINER 4000. Mathematical Models. Technical Description.

References

103.Planar Motion Mechanizm Model Tests of 6 Barge and 25 Barge River Tows. By Kowalyshyn D. Altman R. Tractor Hydronautics, Inc. Technical Report 88003-1, 1988.

104.Popov S.G. Some tasks and methods of experimental aeromechanics. Moscow:State publishing house of Technical theoretical literature, 1952. – p.496.

105.Pourzaniani M. Formulation of The Force Mathematical Model of Ship Manoeuvring. – Int.Shipbuild.Progr.,37,no.409(1990), pp.5-32.

106.Primer of Towing. By George H. Reid. Cornell Maritime Press, Centreville, Maryland, Second edition ,1994.

107.Processing and analysis of sea trials results of river-sea m/v Vasiliy Kalashnikov. Navis Technical Report 31041323-01-04, 31041323-01-04, S.-Petersburg, 1996.

108.Research of shallow water effect on container ship hydrodynamic characteristics on passage over sea bottom bench. State Marine Technical University Report X-382/1-11-MTU, S.-Petersburg, 2000.

109.Reynolds E.J., Renilson M.R. Determining hydrodynamic coefficients from fullscales standard trials. Proc.Int.Symposium on Maneovrability of Ships at Slow Speed (MANEOVRABILITY'95), Ilawa-Poland, 1995.

110.Roestad A.E. A classification society’s experience with IMO resolution No. A. 751(18). Marine Simulation and Ship Manoeuvrability (The international conference MARSIM’96). Balkemaa, Rotterdam, 1996.

111.Rusetsky A.A. Hydrodynamics of controllable-pitch propellers. – S.-Petersburg:Shipbuilding, 1968.

112.Russian Maritime Register of Shipping: in 2 volumes. – S.-Petersburg:Ivan Fiodorov, 1995.

113.Samsonov V.I., Hudov N.I., Miryushcenko A.A. Ship explosion engines. Textbook for Sea transport department institutes of higher education. – Moscow:Transport, 1981. – p.400.

114.Ship theory guide: in 3 volumes. vol.1. Hydromechanics. Ship movement resistance. Ship propulsors. / edited by Voitkunsky Ya.I. – S.-Petersburg: Shipbuilding, 1985.

115.Ship theory guide: in 3 volumes. vol.2. Ship Motions. / edited by Voitkunsky Ya.I.

– S.-Petersburg: Shipbuilding, 1985.

116.Ship theory guide: in 3 volumes. vol.3. Controllability of vessels. / edited by Voitkunsky Ya.I. – S.-Petersburg: Shipbuilding, 1985 г. – p.544.

117.SHIPHADLING. Port Revel Marine Research and Training Center (Operated by Sogreah). – Centre De Port Revel: Grenoble, 1978.

118.Sobolev G.V. Controllability of ship and navigation automation. – S.-Petersburg: Shipbuilding, 1976.

119.Stierman E.J. The influence of the rudder on the propulsive performance of ships – Part 1. Int. Shipbuild. Progr., 36, no 407 (1989) pp. 303-334, 1988.

120.TaylorD.A. Introduction to Marine Engeneering. London :Batterworths, 1983. – 320 p.

Chapter 6. List Of Obligatory Maneuvers at Mathematical Model Testing.

91

References

121.Tumashik A.P. Calculation of ship hydrodynamic characteristics at manoeuvring. – Shipbuilding, 1978, №5, p.13-16.

122.Tumashik A.P. Mathematical model of boring ship, detained in the specified spot of sea. – "Shipbuilding questions", series "Ship designing", vol.24, 1980, p.52-54.

123.Vantorre M., Eloot K., Heylbroeck B. Evaluation of Mathematical Models for Propulsion and Rudder Forces by Means of Captive Model Tests with Bulkcariers in shallow water. International Symposium on Manueuvrability of Ships at Slow Speed. MANOEUVRABILITY'95. – Ilawa, Poland, 16-19 Octouber 1995. pp.39-54.

124.Vasilyev A.V. Controllability of ships. S.-Petersburg:Shipbuilding, 1989.

125.Vitaver L.M., Pavlenko V.G. General equations of ship motion at current. – Novosibirsk: Transactions of WTRI, vol. Perfection of propulsion quality and manoeuvrability of ships, 1984, page 25-39.

126.Voitkunsky Ya.I. Resistance of ships. S.-Petersburg:Shipbuilding, 1988.

127.Voitkunsky Ya.I., Pershits R.Ya., Titov I.A. Ship theory guide. Hydromechanics. Ship propulsors and controllability. – S.-Petersburg: Shipbuilding, 1973.

128.Vorobyov Yu.L., Labaznikov V.K. Experimental researches of transverse forces and moments, having an effect on ships at shallow water and at channel border. – Odessa: Thesises of lecture at All-Union scientific conference “Experimental methods of research of active influence manners on ships seagoing ability”, 1984, p.87-89.

129.Yansheng Y. Study on ship manoeuvring mathematical model in shiphandling simulator. Marine Simulation and Ship Manoeuvrability (The international conference MARSIM’96). Balkemaa, Rotterdam, 1996.

130.Yasukawa H., Yoshimura Y., Nakatake K. Hydrodynamic forces on a ship moving with constant rudder angle: A theoretical treatment of rudder angle test. Marine Simulation and Ship Manoeuvrability (The international conference MARSIM’96). Balkemaa, Rotterdam, 1996.

131.Yegorova Ye.Yu., Lobachiov M.P., Chicherin I.A. Prediction of propeller-hull interaction coefficients and propulsion quality of ship. XXXVIII Krylovskie chteniya “Problems of ships propulsion quality and hydromechanics”. – S.- Petersburg, 1997.

132.Yum D.-J., Lee T.-I., Lee H.-W. New manoeuvring sea trial system using DGPS. Marine Simulation and Ship Manoeuvrability (The international conference MARSIM’96). Balkemaa, Rotterdam, 1996.

133.Zaitsev V.N., Sobolev P.K. Estimation of reversed propeller influence to hull hydrodynamic characteristics for single-propeller large-capacity vessel. – S.- Petersburg: Trans.of KSRI, vol. 332, 1980, p.53-66.

134.Zilman G.I., Rozhdestvensky V.V. Hydrodynamic reactions of ship-to-ship interaction at overtaking and encounter. – S.-Petersburg: Transactions of MTU, vol. “Technical resources of ocean developing”, 1980.

135.Znamerovsky B.P. Theoretic fundamentals of ship control. S.-Petersburg:1974.

136.Zuyuan L., Xiedong Z., Xiuheng W. Calculation of manoeuvring hydrodynamic force including the effect of viscosity. Marine Simulation and Ship Manoeuvrability (The international conference MARSIM’96). Balkemaa, Rotterdam, 1996.

92 NAVI-TRAINER 4000. Mathematical Models. Technical Description.

APPENDIX 1

Database Information

Copyright Transas Marine Ltd. 2003

The database contains coefficients values of the conventional ships hydrodynamic characteristics.

Symbols

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters Range

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ship Motion In Calm Deep Water

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Added Masses Coefficients

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Added masses: λ11 , λ22 , λ33 , λ44 , λ55 , λ66

 

3.5

L / B 7.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5

B /T 7.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ship Hull Hydrodynamic Characteristics

 

 

 

 

 

 

 

 

 

 

 

Stern Type: V-shape, U-shape, skeg (single-screw), skeg (double-screw)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

β

C2

, C3

3.5

L / B 7.5

Non-dimensional lateral force Cy β ,

3.5

B /T 7.5

Non-dimensional yaw moment m1,m2

 

m3,m4

 

0.65

CB 0.83

Non-dimensional yaw moment at rotation

F(xP )

0.93

οд 1.00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Non-dimensional longitudinal force: CxβBH , CxωBH , CxβBHβ , CxωBHω

,

3.5

L / B 7.5

β

ω

 

β β

 

 

 

 

 

 

 

 

 

 

 

β β

 

 

 

 

 

 

 

 

 

 

 

 

3.5

B /T 7.5

 

ω

 

 

 

 

 

 

 

 

ω

ω

 

 

 

 

 

 

 

Cx BH , Cx BH ,

C

β

ω

ω

 

, Cx BH

.

 

 

 

 

 

 

0.65

CB 0.83

 

 

 

 

 

 

x BH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Towing resistance:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.30

(

 

2 )0.42

Cxr (Fn) , Cxf 0 (Rn) .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 Fn 0.3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Non-dimensional lateral force: CyβBH , Cyω

BH , CyβBHβ , Cyω

BHω

,

109

Rn 3 109

β

ω

 

β β

 

 

 

β

 

 

 

 

 

β β

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω

 

 

ω

ω

 

ω

ω

.

 

 

 

 

 

 

 

 

 

 

 

 

Cy BH , Cy BH ,

Cy BH

, Cy BH

 

 

 

 

 

 

 

 

 

 

 

 

Non-dimensional yaw moment: Cmzβ BH , Cmzω BH , Cmzβ βBH ,

C

ω

 

ω

 

 

 

, C β

ω

 

 

, Cβ β

ω

 

, Cβ

ω

 

ω

 

, Cβ β

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω

ω

 

 

 

 

 

mz BH

 

 

 

mz BH

mz BH

 

 

mz BH

 

mz BH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Non-dimensional roll moment: Cmxβ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BH , Cmxω

 

BH , Cmxβ βBH , Cmxω ωBH ,

C β

 

 

 

 

, Cβ β

 

 

, Cβ

 

 

 

 

, Cβ β

 

 

 

; C

ω

ω

ω

, C β

 

 

 

 

 

 

 

 

 

 

 

 

ω

 

 

 

ω

 

ω

 

ω

 

ω

 

ω

ω

ω

ω

,

 

 

 

 

mx BH

 

 

 

mx BH

mx BH

 

 

mx BH

 

mx BH

mx BH

 

 

 

 

 

 

β β

 

 

 

 

 

 

 

 

 

β

 

ω

 

 

 

 

β β

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω

 

ω

 

ω

 

 

 

 

 

 

 

 

 

ω

 

ω

ω

ω

 

 

 

 

 

Cmx BH

 

 

 

, dCmx BH , dCmx BH

, dCmx BH ,

dCmx BH

 

 

 

 

 

Appendix 1. Database Information.

95

Symbols

 

Parameters Range

 

 

 

1

 

2

 

Steering Gear Hydrodynamic Characteristics

Rudder types: balanced rudder, semi-balanced rudder, Shilling’s rudder, Becker’s rudder

Non-dimensional longitudinal rudder force: Cx R0 , CxδR , C δx δR .

Non-dimensional lateral rudder force: Cy0R0

 

 

 

 

CyβR0 , CyωR0 , CyβRβ0 ,

 

 

 

 

 

β

 

 

β β

 

β

 

 

 

β β

 

 

 

δ

δ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω

 

ω

 

ω

 

ω

ω

ω

ω

ω

ω

,

Cy R0

, Cy R0

, Cy R0

, Cy R0

, Cy R0

, Cy R , Cy R

C δy ωR ω .

Non-dimensional interaction force on hull: Cy0IN0 CyβIN0 , CyωIN0 ,

β β

 

 

 

 

 

β

 

 

β β

 

β

 

 

 

β β

 

 

 

δ

 

ω

 

ω

 

ω

 

ω

ω

ω

ω

ω

Cy IN0

, Cy IN0

, Cy IN0

, Cy IN0

, Cy IN0

, Cy IN0

, Cy IN ,

CyδINω , C δy ωINω .

Non-dimensional interaction moment on hull:

β

 

 

 

 

 

 

 

β β

 

 

 

 

 

 

 

β

 

 

 

 

 

,

β β

 

 

,

ω

ω

ω

ω

ω

Cmz IN0

, Cmz IN0

, Cmz IN0 , Cmz IN0

, Cmz IN0

Cmz IN0

Cmzβ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω

INω

0 , Cmzβ β INω ω0 , Cmzδ

IN0 , Cmzδ ωIN0 , C δmzω INω 0 .

 

 

 

 

Non-dimensional hydrodynamic moment above stock: CD0 .

0

AR / LT ≤ 0.035

0

λR ≤ 2.5

−0.5 ≤ yR / DP ≤ 0.5 0 ≤ CT ≤ ∞

3.5 ≤ L / B ≤ 7.5

3.5 ≤ B /T ≤ 7.5

0.65 ≤ CB ≤ 0.83

0.30 ≤ (A2 )≤ 0.42

Propeller Hydrodynamic Characteristics

Propeller types: fixed pitch propeller, ducted fixed pitch propeller, controllable pitch propeller, ducted controllable pitch propeller, steering ducted propeller, waterjet, vane propeller.

Propellers of “B” series

thrust coefficient KT (J,P / D)

moment coefficient KQ (J, P / D)

Ducted propellers

thrust coefficient KT (J,P / D) .

moment coefficient KQ (J, P / D) .

Steering ducted propeller

Non-dimensional longitudinal force on nozzle stock: Cx0PN , Cxδ PN ,

Cxδ PNδ .

Non-dimensional lateral force on nozzle stock: Cy0PN , Cyδ PN .

Non-dimensional hydrodynamic moment about Z-axis: Cmz0 PN ,

Cmzδ PN .

Waterjet

Steering and reversing gear characteristic: KH = f (Kq) .

−∞ ≤ J ≤ ∞

0.5

P / D ≤ 1.4

0.4

A / A0 ≤ 1.0

3 ≤

Z

7

−∞ ≤ J

≤ ∞

0.5

lN / DN ≤ 1.2

0.5

P / D ≤ 1.4

0.4

A / A0 ≤ 1.0

3 ≤

Z ≤ 7

0.5

lN / DN ≤ 1.5

0 ≤ CT

≤ ∞

0 ≤ CT ≤ ∞

0 ≤ KH ≤ 2.5

0.2 ≤ Kq ≤ 0.8

96 NAVI-TRAINER 4000. Mathematical Models. Technical Description.

Symbols

Parameters Range

 

 

Vane propeller

0 ≤ eVSP ≤ 0.75

Non-dimensional longitudinal force: CxVSP .

− 180o αVSP ≤ 180o

Non-dimensional lateral force: Cy VSP .

− ∞ ≤ JVSP ≤ ∞

 

Thrust deduction fraction: t(δ AP ) .

AVSP / A0VSP = 0.93

 

eVSP / DVSP = 0.63

 

 

Thruster

0 ≤ Vlq /VTHR ≤ 5.0

Coefficient of ship hull influence on thrust: fxTHR .

− 180o β ≤180o

Coefficient of ship hull influence on moment: fmTHR .

 

 

 

Engines with Remote Control System

 

Diesel engine types: low speed engines, medium speed engines, high speed engines

 

 

Partial characteristics: Qe (n,h).

0.2 ≤ b ≤ 0.4

Friction moment coefficients: A, b

typical programs atlas

Air pressure moment at start: QA .

 

RCS general programs

 

General combinative diagrams

 

 

 

Environment Mathematical Models

 

Aerodynamic and Hydrodynamic forces

Ship Hull Aerodynamic Characteristics

Shape types: single superstructure with/without spirketting plate and poop, double superstructure with/without spirketting plate and poop

~k

~k

 

 

 

 

 

 

 

Non-dimensional longitudinal force: ax i ,

bx j ,

 

 

 

 

 

0.035 ≤ H / L ≤ 0.1

~k

~k

0

1

 

2

 

 

 

 

 

3.5

L / B ≤ 7.5

Non-dimensional lateral force: ay i ,

by j

, qy k

, qy k , qy k

 

 

~k

~k

0

1

2

 

 

An / LH

Non-dimensional vertical force: az i ,

bz j

, qz k , qz k , qz k

 

 

~k

~k

 

0

,

1

,

2

−0.4 ≤ xn / L ≤ 0.4

Non-dimensional roll moment: amx i , bmx j , qmx k

qmx k

qmx k

0.5 ≤ zn /T ≤ 2.5

~k

~k

0

,

1

,

2

Non-dimensional yaw moment: amz i

, bmz j , qmz k

qmz k

qmz k

 

 

(where k= 0 – 2; i = 0 – 6; j = 1 – 5) are the coefficients considering the

 

 

relative hull and superstructures area

kA, kAN , k1A, k1AN

 

 

Hull Hydrodynamic Characteristics at Even/Alternative Current

 

 

 

 

 

 

Non-dimensional lateral force due to local current irregularity:

 

3.5

B /T ≤ 7.5

Cy (B /T )

 

 

 

 

 

 

 

 

 

Waves Characteristics

 

 

 

 

 

 

 

 

 

Frequency and angular spectrum: sr (σ )

 

 

 

 

 

 

0.2 ≤ H1 3 ≤ 8

reducing coefficients: Fxi, ξi), Fyi, ξi), Fzi, ξi), Fmxi, ξi), Fmyi, ξi),

0 ≤ T / λ ≤ 0.5

Fmzi, ξi)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 ≤ L / λ ≤ 7.0

 

 

 

 

 

 

 

 

0 ≤ B / λ ≤ 4.0

 

 

 

 

 

 

 

 

Hydrodynamic interaction in shallow waters.

 

 

 

 

 

 

 

Bottom parameters: flat bottom, inclined bottom.

 

 

 

 

 

 

 

 

 

 

 

 

 

Non-dimensional longitudinal force: CxBOT ,

 

 

 

 

 

1.2 ≤ HBOT /T ≤ 20.0

Non-dimensional lateral force: CyBOT ,

 

 

 

 

 

 

0 ≤ χ ≤ 15o

Appendix 1. Database Information.

97

CmxBOT ,

Symbols

Parameters Range

 

 

Non-dimensional vertical force: CmzBOT

Non-dimensional roll moment:

Non-dimensional pitch moment: CmyBOT .

Non-dimensional yaw moment: CmzBOT .

Added masses: λ11, λ22, λ66, .

Interaction coefficients due to bottom influence: WP , t

Ship to Wall Hydrodynamic Interaction

Wall parameters: flat vertical wall, ledged wall.

Non-dimensional longitudinal force: CxWALL ,

Non-dimensional lateral force: CyWALL ,

Non-dimensional yaw moment: CmzWALL .

Added masses: λ11, λ22 , λ66 .

Interaction coefficients due to bottom influence: WP , t

Hydrodynamic Interaction with Channel Walls and Bottom

Non-dimensional longitudinal force: CxCHAN ,

Non-dimensional lateral force: Cy CHAN ,

Non-dimensional yaw moment: CmzCHAN .

Added masses: λ11, λ22, λ66, .

Interaction coefficients due to bottom influence: WP , t

Ship to Ship Hydrodynamic Interaction

Non-dimensional longitudinal force: Cx SHIP .

Non-dimensional lateral force: Cy SHIP .

Non-dimensional yaw moment: Cmz SHIP .

Added masses: λ11, λ22, λ66 .

Interaction coefficients due to bottom influence: WP , t .

Anchor Gear

Anchor gear parameters: winch type, anchor type, chain gauge.

Anchor holding force coefficient: kHOLD , μ HOLD

Chain holding force coefficient: kHOLDCHN

Mooring Gear

Mooring gear parameters: winch type, rope type, knights position.

Coefficient defining rope stretch: kROPE

Fenders

Fender rigidity coefficients kS ,kVn, k

0 ≤ Y0 / B ≤ 5.0

1.2 ≤ HBOT /T ≤ 5.0 − 180o ξ ≤ 180o

0 ≤ Fn ≤ 0.3

0.5 ≤ l / L ≤ ∞

0 ≤ h1 / B ≤ 1

0 ≤ h2 / B ≤ 1

1.2 ≤ HCHAN /T ≤ 5.0

1.5 ≤ BCHAN / B ≤ 5.0

0 ≤ mCHAN / B ≤ 2.0

0o α ≤ 90o

−∞ ≤ J ≤ ∞

~

≤ 2.0

− 2.0 ≤ xSHIP / L

~

1.1ySHIP / B 5.0

0.5L1 / L2 ≤ 1.5

0.5V1 /V2 ≤ 1.5

holding forces atlas for different soil types

holding forces atlas for different soil types

coefficients atlas for different fender types

98 NAVI-TRAINER 4000. Mathematical Models. Technical Description.

Соседние файлы в папке Буклеты