Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Физиология и патология системы крови

.pdf
Скачиваний:
402
Добавлен:
09.02.2015
Размер:
1.61 Mб
Скачать

51

метилкобаламин и дезоксиаденозил-В12. Последний участвует в метаболизме жирных кислот и принимает участие в образовании гема, а метилкобаламин – в метаболизме фолиевой кислоты, которая необходима для синтеза ДНК.

Немаловажную роль в регуляции эритропоэза играют другие витамины группы B, а также железы внутренней секреции. Так, витамин В6 необходим для образования гема в эритробластах. Витамин В2 необходим для нормального течения окисли- тельно-восстановительных процессов. При его дефиците развивается анемия.

Все гормоны, регулирующие обмен белков (соматотропный и тиреотропный гормоны гипофиза, гормон щитовидной железы – тироксин и др.) и кальция (паратгормон, тиреокальцитонин), необходимы для нормального эритропоэза. Мужские половые гормоны (андрогены) слегка стимулируют эритропоэз, тогда как женские (эстрогены) – тормозят его, что обуславливает меньшее число эритроцитов у женщин по сравнению с мужчинами.

Цитокины. Особо важную роль в регуляции эритропоэза играют цитокины, и в первую очередь – специфический регулятор эритропоэза, получивший наименование эритропоэтина. Еще в 1906 году два французских ученых Карно и Дефлендер показали, что сыворотка из крови кроликов, перенесших кровопотерю, стимулирует эритропоэз. В дальнейшем было установлено, что эритропоэтины присутствуют в крови животных и людей, испытывающих гипоксию – недостаточное поступление к тканям кислорода. Это наблюдается при анемиях, подъеме на высоту, мышечной работе, при снижении парциального давления кислорода в барокамере, при тяжелых поражениях сердца и заболеваниях легких. В небольших концентрациях эритропоэтины обнаружены в крови здоровых людей, что позволяет считать их физиологическими регуляторами эритропоэза. Вместе с тем, при анемиях, сопровождающих заболевания почек, эритропоэтины отсутствуют, или их концентрация значительно снижается. В настоящее время известно, что эти вещества синтезируются и секретируются, в основном, перитубулярными клетками почки. Эритропоэтины образуются также макрофагами печени, селезенки, костного мозга.

Эритропоэтин является гликопротеидом с молекулярной массой 36000 Да. В то же время в Читинской медицинской академии установлено, что эритропоэтической активностью обладают полипептиды, молекулярная масса которых не превышает 10000 Да. В частности, подобные соединения обнаружены в костном мозге и эритроцитах.

Эритропоэтин оказывает действие непосредственно на клетки предшественники эритроидного ряда (БОЕэ и КОЕэ). Его функции сводятся к следующему: 1) ускоряет и усиливает переход БОЭэ в КОЕэ, а последние в эритробласты; 2) увеличивает число митозов клеток эритроидного ряда; 3) исключает один или несколько циклов митотических делений; 4) ускоряет созревание не делящихся клеток – нормобластов, ретикулоцитов; 5) увеличивает выход ретикулоцитов из костного мозга в общий кровоток; 6) усиливает синтез гемоглобина.

Значение эритропоэтина в процессе эритропоэза можно видеть на следующем примере. Эритроидные предшественники были добавлены к культуре костномозговых фибробластов. Однако в этих условиях их развитие не происходило. Как только к культуре был добавлен эритропоэтин, наступала быстрая пролиферация клеток предшественников эритроцитов, которые буквально втискивались в промежутки между фибробластами.

Наряду с эритропоэтинами в крови находятся также и ингибиторы эритропоэза. Они образуются в почках и печени. Под воздействием ингибиторов эритропоэза тормозится синтез гемоглобина и удлиняются сроки перехода одних форм молодых эритроцитов в другие.

Интенсивность эритропоэза у человека в значительной степени определяется

51

52

соотношением эритропоэтинов и ингибиторов эритропоэза.

Следует заметить, что после образования БОЕэ на неё кроме эритропоэтина оказывают влияние IL-3 и GM-СSF, благодаря чему она превращается в КОЕэ, переходящую под воздействием эритропоэтина в эритробласт.

Важная роль в эритропоэзе принадлежит ядерным факторам – GАТА-1 и NFE- 2. Отсутствие ГАТА-1 полностью предотвращает образование эритроцитов, недостаток НФЭ-2 нарушает всасывание железа в кишечнике и синтез глобина.

Мы перечислили лишь основные соединения, влияющие на эритропоэз, ибо этот процесс до сих пор изучен недостаточно и роль многих ростковых факторов нуждается в уточнении.

3.9.8.4. Нервная регуляция эритропоэза

Влияние нервной системы на эритропоэз не столь значительно, как гуморальных факторов. Возбуждение симпатического отдела вегетативной нервной системы, как и физическая нагрузка, приводит к увеличению числа эритроцитов в периферической крови. Эта реакция отчасти носит перераспределительный характер и зависит от опорожнения депо крови, в первую очередь селезенки.

Вто же время показано, что адреналин, норадреналин, взаимодействующие с2-адренорецепторами почек, активируют аденилатциклазную систему, благодаря чему усиливается синтез и секреция эритропоэтина. Одновременно катехоламины действуют на КОЕэ, что также приводит к стимуляции эритропоэза.

Вгипоталамусе обнаружены центры, регулирующие интенсивность эритропоэза. Так, раздражение заднего гипоталамуса, как и разрушение переднего, приводит

кусилению эритропоэза и увеличению в крови количества эритроцитов, в том числе ретикулоцитов. К противоположным сдвигам ведет раздражение передних или разрушение задних отделов гипоталамуса.

Впоследнее время показано, что стимуляция эритропоэза при раздражении гипоталамуса связана с повышением выработки эритропоэтинов, а также цитокинов, усиливающих гемопоэз. Не исключено, что эти реакции также осуществляются за счет стимуляции передней доли гипофиза и усиления выработки гормонов, влияющих на белковый и липидный обмен.

3.9.8.5. Особенности эритропоэза у плода и ребенка

Началом кроветворения у плода считают 19-21 день, когда появляются внеэмбриональные очаги эритропоэза в желточном мешке. После 10-й недели беременности очаги кроветворения в желточном мешке полностью исчезают, и на смену приходит кроветворение в печени, которое начинает развиваться с 6-й недели, но достигает максимума к 10-12-й неделям, затем постепенно угасает, полностью прекращаясь перед рождением ребенка. Это так называемый мегалобластический тип кроветворения, при котором в печени образуются крупные ядерные эритроциты – мегалобласты, пересыщенные гемоглобином. Цветовой показатель в это время у плода всегда больше 1.

На третьем месяце беременности кроветворение у плода протекает также в селезенке, но оно прекращается к 5-му месяцу гестации.

С 4-5-го месяца беременности кроветворение начинает развиваться в костном мозге и тогда мегалобластический тип постепенно сменяется на нормобластический. К этому сроку в желудке плода появляется гастромукопротеин. В последние 3 месяца гестации нормобластический тип кроветворения у плода является основным, и оно в дальнейшем осуществляется на протяжении всей жизни. В связи со сказанным становится понятно, почему у плода до 6 месяцев встречается много незрелых форменных элементов (мегалобластов, эритробластов), а после появления гастро-

52

53

мукопротеина и развития нормобластического кроветворения в крови плода содержатся преимущественно зрелые эритроциты.

На 9-10-й неделе беременности в мегалобластах плода можно обнаружить примитивные гемоглобины – HbЕ или HbP, отличающиеся по своему строению от гемоглобина взрослых людей лишь структурой глобина. К 3-му месяцу беременности эмбриональный гемоглобин плода полностью заменяется фетальным гемоглобином (HbF), являющимся основным переносчиком кислорода в пренатальном периоде. В 3-х месячном возрасте количество гемоглобина у плода в среднем равно 90 г/литр. В дальнейшем концентрация гемоглобина у плода резко возрастает и в 6 месяцев составляет 140-150 г/литр, а перед рождением – более 200 г/литр. Следует отметить, что с 4-го месяца в крови плода появляется HbA, но содержание его нарастает крайне медленно и у 8-месячного плода не превышает 10%, а у новорожденного –

30%.

У новорожденного ребенка число эритроцитов достигает 7 1012/литр, уровень гемоглобина – до 220-240 г/литр. Такое большое количество эритроцитов объясняется тем, что плод в утробе матери и во время родов испытывает состояние гипоксии, вызывающей в его крови увеличение содержания эритропоэтинов. Однако после рождения у ребенка возникает гипероксия (так как устанавливается внешнее дыхание), что приводит к снижению интенсивности эритропоэза, хотя в первые дни он остается на достаточно высоком уровне. Через несколько часов после рождения число эритроцитов и уровень гемоглобина даже несколько возрастает, главным образом за счет сгущения крови, но уже к концу первых суток количество эритроцитов начинает падать. Особенно резко содержание эритроцитов падает на 5-7-й, а гемоглобина на 10-й день жизни ребенка после массового гемолиза эритроцитов и развития так называемой физиологической желтухи новорожденных. Столь быстрое снижение числа эритроцитов у новорожденного ребенка объясняется очень коротким периодом жизни красных кровяных телец плода (с ними ребенок появляется на свет) – всего 10-14 дней, и очень высокой степенью их разрушения, в 5-7 раз превышающей интенсивность гибели эритроцитов у взрослого. Однако в эти сроки происходит и быстрое образование новых эритроцитов. Эти процессы протекают одновременно и связаны с необходимостью замены HbF на HbА.

Значительно отличается красная кровь новорожденного по размеру и форме: с первых часов жизни и до 5-7-го дня у детей отмечается макроцитоз и пойкилоцитоз. В крови выявляется много молодых незрелых форм эритроцитов. В течение первых часов жизни у ребенка наблюдается резкое повышение количества ретикулоцитов (ретикулоцитоз) до 4-6%, что в 4-6 раз превышает число этих форм у взрослого. Кроме того, у новорожденного можно обнаружить эритробласты и нормобласты. Всё это указывает на интенсивность эритропоэза в первые дни жизни ребенка.

Врачу-педиатру следует помнить, что, если в первые две недели жизни ребенка содержание гемоглобина в капиллярной крови будет менее 145 г/литр, то это свидетельствует об анемии.

К концу первого месяца жизни число эритроцитов и уровень гемоглобина у ребенка остается высоким и значительно превышает эти показатели у взрослых (эритроцитов 5-5,6 1012/литр, а Hb – 150-190 г/литр). К 2-6-му месяцам уровень гемоглобина у ребенка становится даже меньше, чем у взрослых, и достигает 100-130 г/литр. Аналогичная динамика характерна и для количества эритроцитов, число которых к полугодовому возрасту составляет от 3 до 4,5 1012/литр. Столь резкое уменьшение содержания эритроцитов связано с гемолизом фетальных эритроцитов, срок жизни которых приблизительно в 2 раза меньше, чем у взрослого человека. Кроме того, у грудного ребенка по сравнению с взрослыми интенсивность эритропоэза значительно снижена, что связано с пониженным образованием основного фак-

53

54

тора эритропоэза – эритропоэтина. В дальнейшем содержание эритроцитов и гемоглобина может слегка возрастать или падать вплоть до полового созревания. К этому моменту отмечаются половые различия в нормативах красной крови.

Особенно резкие индивидуальные вариации в числе эритроцитов и уровне гемоглобина наблюдаются в возрастные периоды от 1 года до 2-х лет, от 5 до 7-ми и от 12 до 15-ти лет, что, по-видимому, связано со значительными вариациями в темпах роста детей.

3.9.9. Лейкоциты

Лейкоциты, или белые кровяные тельца, представляют собой образования, имеющие различную форму и величину. По своему строению лейкоциты делятся на две большие группы: зернистые, или гранулоциты (полиморфноядерные лейкоциты

– ПЯЛ) и незернистые, или агранулоциты (мононуклеары). Деление это является чисто условным, ибо под электронным микроскопом можно видеть, что и те, и другие лейкоциты содержат разбросанные гранулы. Однако в световом микроскопе зерна в агранулоцитах практически неразличимы. К зернистым лейкоцитам относятся нейтрофилы, эозинофилы и базофилы, к агранулоцитам – лимфоциты и моноциты. Свое наименование клетки зернистого ряда получили от способности окрашиваться красками: эозинофилы воспринимают кислую краску (эозин), базофилы – щелочную (гематоксилин), а нейтрофилы – и ту, и другую (рис. 1 и 5).

В норме количество лейкоцитов у взрослых людей колеблется от 4,5 до 9 тысяч в 1 мм3, или 4,5 – 9 109/литр. Число лейкоцитов подвержено сезонным колебаниям. Больше лейкоцитов осенью и зимой, меньше весной и еще меньше летом. Но эти колебания не столь ощутимы и не выходят за рамки установленных норм. Увеличение числа лейкоцитов за пределы нормы носит название лейкоцитоз, уменьшение – лейкопения. Лейкоцитозы могут быть физиологические и патологические, тогда как лейкопении встречаются только при патологии.

3.9.9.1. Физиологические лейкоцитозы

Различают следующие виды физиологических лейкоцитозов:

Пищевой – возникает после приема пищи. При этом число лейкоцитов увеличивается незначительно (в среднем на 1-3 тыс. в мкл) и редко выходит за границу верхней физиологической нормы. Наиболее интенсивно число лейкоцитов возрастает после приема белковой пищи, что объясняется её антигенным характером. При пищевом лейкоцитозе большое количество лейкоцитов скапливается в подслизистой основе тонкого кишечника. Здесь они осуществляют не только защитную функцию (препятствуют попаданию чужеродных агентов в кровь и лимфу), но и принимают участие в переваривании пищи, осуществляя так называемое внутриклеточное пищеварение. Пищевой лейкоцитоз носит перераспределительный характер и обеспечивается поступлением лейкоцитов в циркуляцию из депо крови.

Миогенный лейкоцитоз наблюдается после тяжелой и даже непродолжительной мышечной нагрузки. Число лейкоцитов при этом может возрастать в 3-5 раз. Особенно резко количество лейкоцитов увеличивается при беге на марафонские дистанции, при игре в футбол, хоккей, баскетбол. Возрастание числа лейкоцитов происходит главным образом за счет нейтрофилов, хотя может наблюдаться и повышение количества лимфоцитов. Увеличение числа лейкоцитов после интенсивной мышечной работы сохраняется на протяжении нескольких часов. Огромное количество лейкоцитов при физической нагрузке скапливается в мышцах. Миогенный лейкоцитоз носит в основном перераспределительный характер, но при этом происходит мобилизация клеток из костномозгового резерва. Кроме того, после интенсивной мышечной нагрузки отмечается оживление костномозгового кроветворения.

54

55

Эмоциональный лейкоцитоз и лейкоцитоз при болевом раздражении редко достигает высоких значений. Носит перераспределительный характер и, в основном, связан с увеличением числа нейтрофилов. По всей видимости, значительное увеличение числа лейкоцитов у новорожденного ребенка отчасти обусловлено тяжелейшим стрессом, который он переживает в процессе родового акта.

Овуляторный лейкоцитоз характеризуется незначительным повышением числа лейкоцитов при одновременном снижении количества эозинофилов. Характерным его признаком является обязательное увеличение 17-оксикортикостероидов в крови.

При беременности большое количество лейкоцитов скапливается в подслизистой основе матки. Этот лейкоцитоз, в основном, носит местный характер. Смысл его не только предупредить попадание инфекции в организм роженицы, но и стимулировать сократительную функцию матки.

Во время родов число лейкоцитов увеличивается за счет повышения количества нейтрофилов. Содержание белых кровяных телец уже в начале родового акта может достигать более 30000 в 1 мкл. Послеродовый лейкоцитоз сохраняется на протяжении 3-5 дней и, в основном, связан с поступлением лейкоцитов из депо крови и костномозгового резерва.

Повышение числа лейкоцитов может наблюдаться во время судорожных припадков, независимо от причин, их вызвавших. При этом число лейкоцитов достигает внушительных цифр (до 20000 и более в 1 мкл). Кроме того, лейкоцитозы с преимущественным увеличением числа нейтрофилов сопровождают тошноту и рвоту.

Безусловно, все перечисленные состояния должны учитываться не только врачами клиницистами, но и лаборантами. Анализы крови обязательно должны проводиться в состоянии покоя, натощак и желательно в утренние часы после сна.

Лейкопении встречаются только при патологических состояниях. Особенно тяжелая лейкопения может наблюдаться при поражении костного мозга – острых лейкозах и лучевой болезни. При этом изменяется функциональная активность лейкоцитов, что приводит к нарушениям в специфической и неспецифической защите, попутным заболеваниям, часто инфекционного характера, и даже смерти.

3.9.9.2.Лейкоцитарная формула

Внорме и патологии учитывается не только количество лейкоцитов, но и их процентное соотношение, получившее наименование «лейкоцитарной формулы», или «лейкограммы».

Вкрови здорового человека могут встречаться не только зрелые, но и юные формы лейкоцитов, однако обнаружить их удается лишь у самой многочисленной группы – нейтрофилов. К ним относятся юные (метамиелоциты) и палочкоядерные нейтрофилы. Метамиелоциты имеют довольно крупное бобовидное ядро, палочкоядерные содержат ядро, не разделенное на отдельные сегменты. В зрелых или сегментоядерных нейтрофилах находится ядро, разделенное на 2 или 3 сегмента. Чем больше сегментов в ядре, тем старее нейтрофил. Увеличение количества юных и палочкоядерных нейтрофилов свидетельствует об омоложении крови и носит

название сдвига влево, снижение этих клеток говорит о старении крови и называется сдвигом вправо. Сдвиг влево часто наблюдается при лейкозах (белокровии), инфекционных и воспалительных заболеваниях. По сдвигу влево можно судить не только о тяжести патологического процесса, но и о реактивности организма.

Таблица 3

Лейкоцитарная формула здорового человека (%)

Гранулоциты (ПЯЛ)

Агранулоциты

55

56

 

 

 

 

 

 

(мононуклеары)

 

Нейтрофилы

 

 

 

 

 

метамие-

 

палочко-

сегменто-

Базофилы

Эозино-

Лимфоциты

Моноциты

лоциты

 

ядерные

ядерные

 

филы

 

 

 

 

 

 

 

 

 

 

0 – 1

 

1 – 4

50 – 65

0 – 1

1 – 4

25 – 40

2 – 8

Увеличение числа нейтрофилов носит название нейтрофилия или нейтрофилез, а уменьшение числа нейтрофилов – нейтропения. Нейтрофилез наблюдается при многих воспалительных и инфекционных заболеваниях.

Увеличение числа базофилов обозначается как базофилия. Последняя встречается при миелоцитарном и особенно базофильном лейкозах. Небольшое увеличение числа базофилов в крови может выявляться при хроническом стрессе.

Повышение числа эозинофилов получило наименование эозинофилия. Отсутствие эозинофилов при подсчете лейкоцитарной формулы носит наименование анэозинопении. Разумеется, истинной анэозинопении не бывает, но при подсчете в мазке 100 клеток крови эозинофилы могут не выявляться. Эозинофилия наблюдается при так называемых аллергических реакциях. Эозинопения и анэозинопения нередко выявляются при тяжелых гнойных процессах и инфекционных заболеваниях.

Увеличение числа лимфоцитов – лимфоцитоз – нередкое явление при туберкулезе. Уменьшение числа лимфоцитов – лимфопения (правильнее лимфоцитопения), так же как эозинопения, выявляется при тяжелых воспалительных и инфекционных заболеваниях.

Моноцитоз – повышение числа моноцитов – наблюдается при ревматизме и других коллагенозах, а также при лейкозах. Уменьшение числа моноцитов – монопения (моноцитопения) может встречаться при хроническом лимфолейкозе.

Таким образом, определение лейкоцитарной формулы является дополнительным методом, помогающим врачу не только правильно поставить диагноз, но и оценить тяжесть заболевания.

3.9.9.3. Характеристика отдельных видов лейкоцитов Нейтрофилы или микрофаги, как и все форменные элементы крови, созре-

вают в костном мозге. Этот процесс занимает около 10 дней. Созревшие нейтрофилы задерживаются в костном мозге на 3-5 дней, составляя костномозговой резерв гранулоцитов.

В циркуляции нейтрофилы живут от 8 до 10 часов. Находящиеся в кровотоке нейтрофилы могут быть условно разделены на 2 группы: 1. свободно циркулирующие и 2. нейтрофилы, занимающие краевое положение в сосудах. Прикрепление нейтрофилов к сосудистому эндотелию происходит благодаря адгезивным молекулам (см. 3.10.1.). Между той и другой группой существует динамическое равновесие и постоянный обмен. Следовательно, в сосудистом русле содержание нейтрофилов приблизительно в 2 раза больше, чем количество, определяемое в вытекающей капле крови.

Нейтрофилы – самая многочисленная популяция лейкоцитов. У взрослого человека ежедневно обменивается приблизительно 1,6 109 нейтрофилов, благодаря чему количество микрофагов сохраняется на постоянном уровне. Из этих цифр можно представить, какой громадный костномозговой резерв предшественников нейтрофилов имеется в организме человека. Нейтрофилы постоянно мигрируют из сосудистого русла. В отличие от лимфоцитов, они не возвращаются назад, подвергаясь элиминации с секретами слизистых оболочек (особенно в полости рта), или в

56

57

течение 2-6 дней погибают в тканях. В норме отмирание нейтрофилов происходит незаметно. По образному выражению R. William, нейтрофилы ведут себя как опытные преступники, не оставляя следов.

Нейтрофилы являются высокодифференцированными клетками, не способными к дальнейшей пролиферации. Они содержат богатейший набор биологически активных субстанций, в том числе способных убивать бактерии, вирусы и раковые клетки. Нейтрофилы подвижны, легко проникают в экстравазальное пространство ткани, высокоактивны. При стимуляции нейтрофилы быстро реализуют свой цитолитический материал по отношению к вирусинфицированным клеткам и могут запускать у них генетические программы апоптоза (запрограммированной гибели). Нейтрофилы находятся в тесном взаимодействии с иммунной системой, особенно с мононуклеарами, являющимися не только фагоцитами, но и антигенпрезентирующими клетками (клетками, представляющими антиген лимфоцитам). Наконец, нейтрофилы обладают способностью выщеплять клеточные элементы из многослойных культур клеток или клеточных конгломератов, которые нередко образуются при злокачественных новообразованиях и некоторых вирусных инфекциях.

Нейтрофилы осуществляют цитотоксический эффект (киллинг) в отношении отдельных чужеродных клеток. Эта защитная реакция осуществляется в присутствии иммуноглобулинов класса G (см. 3.11.3). Нейтрофил подходит к клеткемишени и убивает её на расстоянии с помощью активных форм кислорода, повреждающих мембрану.

Нейтрофилам не только свойствен фагоцитоз. Они синтезируют и секретируют провоспалительные цитокины – TNF , IL-1, IL-6, IL-8, IL-12, интерферон (If ),

гранулоцитарно-макрофагальный колониестимулирующий фактор (GM-СSF), фактор, активирующий тромбоциты (PAF), фактор роста фибробластов, с по-

мощью которых вовлекаются в борьбу новые эшелоны клеток, поступающих в очаг повреждения. Эти клетки выделяют биологически активные соединения, стимулирующие рост клеток и способствующие заживлению ран. К таким соединениям относится сравнительно недавно открытый цитокин – лейкоцитарный фактор роста, который стимулирует деление клеток соединительной ткани. В ответ на раздражители нейтрофилы активируются, проникают в поврежденные ткани, дегранулируют, высвобождают протеолитические и липолитические ферменты, обладающие бактерицидной активностью. Кроме того, они генерируют токсические производные кислорода.

Обладая фагоцитарной функцией, нейтрофилы поглощают не только бактерии, но и продукты повреждения тканей. В составе нейтрофилов содержатся ферменты, разрушающие бактерии. Нейтрофилы способны адсорбировать антитела и переносить их к очагу воспаления.

В нейтрофилах содержатся следующие протеазы:

Эластаза – сериновая протеаза азурофильных гранул, характеризующаяся широкой специфичностью по отношению к белковым субстратам. Она гидролизует эластин, протеогликаны, гемоглобин, фибриноген, а также неспиральные цепи коллагена, расщепляя поперечные связи между ними.

Эластаза нейтрофилов участвует в ряде процессов, связанных с воспалением поврежденных тканей. Она не только расщепляет структурные элементы соединительной ткани, но и способствует инфильтрации лейкоцитами очага воспаления, а также скоплению этих клеток в микрососудах. При активации нейтрофилов эластаза расщепляет молекулы сиалофорина (СD43), которые обеспечивают барьерную функцию клеточных мембран. Снижение концентрации сиалофорина в мембранах приводит к скоплению и адгезии клеток.

С активностью эластазы частично связана антимикробная функция нейтрофи-

57

58

лов. В присутствии эластазы происходит отщепление от молекулы кателицидина – особого белка, освобождающегося из специфических гранул нейтрофилов при их дегрануляции, – С-концевого участка, обладающего бактерицидной активностью.

Эластаза приводит к угнетению в эндотелиоцитах синтеза простациклина, способствует адгезии и агрегации тромбоцитов и усилению синтеза PAF, стимулирует образование ингибитора активатора плазминогена, увеличивает экспрессию Р- селектина, обеспечивающего адгезию нейтрофилов к эндотелиальным клеткам и их последующую дегрануляцию.

Катепсин G является нейтральной сериновой протеиназой азурофильных гранул нейтрофилов, близкой по своим свойствам к химотрипсину. Этот фермент способен разрушать гемоглобин, фибриноген, коллаген, казеин, эластин, протеогликаны и другие белки. Катепсин G стимулирует образование ангиотензина II, одновременно инактивируя брадикинин. С другой стороны этот фермент может разрушать белки, обладающие хемотаксическим действием на нейтрофилы.

Под воздействием катепсина G одноцепочечная форма урокиназного активатора плазминогена превращается в двухцепочечную, обладающую выраженной активностью по отношению к плазминогену.

При патологических состояниях, сопровождающихся мобилизацией нейтрофилов, освобожденный катепсин G способен стимулировать тромбоциты, приводя к увеличению концентрации внутриклеточного Са2+, и тем самым усиливать их агрегацию. Под его воздействием на мембране кровяных пластинок экспрессируется рецептор фибриногена.

Активатор плазминогена (АР) – сериновая протеиназа специфических гранул нейтрофилов. В нейтрофилах содержится АР тканевого и урокиназного типов. По всей видимости, эти ферменты играют существенную роль в фибринолизе при физиологических и патологических состояниях.

Кроме перечисленных ферментов, в составе нейтрофилов находятся и другие протеиназы: протеиназа 3 – сериновая протеиназа, участвующая в деструкции фагоцитированных микроорганизмов и вместе с эластазой играющая важную роль в деградации тканей при воспалении, коллагеназа, желатиназа и другие. В нейтрофильных гранулоцитах имеются цистеиновые протеиназы. К ним относится Са2+- зависимые колпаины, необходимые для активации нейтрофилов, так как они принимают участие в передаче сигналов от мембраны к внутриклеточным эффекторам.

Следует заметить, что в нейтрофилах также содержится набор ферментов, способствующих и препятствующих перекисному окислению липидов.

Наконец, нейтрофилы являются источником чрезвычайно активных соединений, образующихся из арахидоновой кислоты при воздействии липооксигеназы и получивших наименование лейкотриены. Эти соединения способны вмешиваться в течение самых различных физиологических функций организма.

Бескровная гибель нейтрофилов обусловлена механизмом, который позволяет выводить эти клетки “из игры”, не проявляя при этом агрессивного характера. Этим механизмом является апоптоз, с помощью которого нейтрофилы “добиваются” самоубийства, то есть активной смерти.

Базофилы долгое время считались рудиментарными клетками. Однако в последние два десятилетия выявлены их важные функции. Следует заметить, что в крови базофилов очень мало (40 – 60 в 1 мкл). Между тем в различных тканях, в том числе сосудистой стенке, содержатся тучные клетки, иначе называемые тканевые базофилы, которые выполняют те же функции, что и базофилы. Базофилы в кровотоке живут часы, тогда как срок жизни тучных клеток исчисляется месяцами и даже годами.

Функция базофилов и тучных клеток обусловлена наличием в них целой груп-

58

59

пы биологически активных веществ. К ним, в первую очередь, принадлежит гистамин – тканевой гормон, расширяющий кровеносные сосуды. В базофилах находятся противосвертывающие вещества – гепарин, хондроитинсульфаты А и С, дерма-

тансульфат и гепарансульфат. Все перечисленные глюкозамингликаны при определенных условиях способствуют сохранении крови в жидком состоянии.

Базофилы способны синтезировать и секретировать фактор активации тромбоцитов – PAF, соединение, обладающее чрезвычайно широким спектром действия, и, в частности, резко усиливающее агрегацию тромбоцитов. Кроме того, базофилы синтезируют тромбоксаны (соединения, способствующие агрегации тромбоцитов), лейкотриены и простагландины – производные арахидоновой кислоты. В базофилах и тучных клетках содержится целый ряд протеолитических ферментов – трипсин,

химотрипсин и другие протеиназы, дегидрогеназы и пероксидаза, а также соеди-

нение, получившее наименование фактор хемотаксиса эозинофилов. Последний способствует привлечению эозинофилов из сосудов в места скопления базофилов в органах-мишенях. При этом эозинофилы поглощают гранулы базофилов и приводят к разрушению гистамина с помощью фермента гистаминазы. При сенсибилизации базофилы начинают продуцировать и секретировать нейтрофильный хемотаксический фактор, серотонин, а также целый ряд биологически активных соединений, влияющих на кровоток и деятельность сердечно-сосудистой системы.

Основное назначение базофилов сводится к очищению среды от целого ряда биологически активных соединений, способных нанести вред организму. Кроме того, под воздействием биологически активных веществ базофилы регулируют местный кровоток, проницаемость капилляров, агрегацию тромбоцитов и свертывание крови. Имеются данные, что продуктам распада базофилов принадлежит важная роль в стимуляции образования новых базофилов.

Особо важную роль играют эти клетки при аллергических реакциях (бронхиальная астма, крапивница, глистные инвазии, лекарственная болезнь и др.), когда под влиянием комплекса антиген-антитело происходит дегрануляция базофилов, и биологически активные соединения поступают в кровь, обуславливая клиническую картину перечисленных заболеваний. Эта реакция осуществляется следующим образом: в ответ на специфические чужеродные агенты, именуемые антигенами (Аг), в организме образуются особые антитела, получившие наименование иммуноглобулины класса Е (IgE). Эти Ат имеют высокое сродство к базофилам и тучным клеткам. Прикрепляясь с помощью рецепторов к базофилам и тучным клеткам, IgE делает их чувствительными к последующему контакту с Аг. Когда сенсибилизированные (обладающие повышенной чувствительностью) клетки соприкасаются с Аг, вызвавшим образование IgE, на их поверхности образуется комплекс Аг+IgE, под воздействием которого базофилы и тучные клетки теряют гранулы и высвобождают целый комплекс биологически активных соединений. Попадая во внеклеточное пространство и распространяясь по всему организму, эти вещества, получившие наименование «анафилактические медиаторы», вызывают типичные аллергические реакции.

Количество базофилов резко возрастает при белокровии, стрессорных ситуациях и слегка увеличивается при воспалении.

Эозинофилы. Кинетика эозинофилов в костном мозге во многом напоминает созревание нейтрофилов, хотя этот процесс для эозинофилов осуществляется несколько быстрее (в среднем за 8 дней). Длительность пребывания эозинофилов в кровотоке не превышает 12 часов, после чего они проникают в ткани, где живут 1012 суток, а затем разрушаются.

Эозинофилы содержат большое число крупных и мелких гранул, в которых находятся ферменты и многие биологически активные соединения. Основным компонентом гранул является главный щелочной белок, имеющий молекулярную мас-

59

60

су около 1000 Да и играющий важную роль в защите от паразитов. Этот белок, прежде чем высвобождаться из эозинофилов, переходит из кристаллической формы в растворимую. Его особенность заключается в том, что он способен нейтрализовать целый ряд ферментов ( -глюкоронидазу, рибонуклеазу, фосфолипазу), а также медиаторы воспаления и гепарин. Все эти реакции крайне необходимы для ликвидации последствий аллергических реакций в организме.

Вгранулах эозинофилов находятся гистаминаза, коллагеназа, эластаза, глюкоронидаза, катепсин, RNK-аза, миелопероксидаза, кислая фосфатаза и арилсульфатаза В. Кроме того, эозинофилы секретируют простагландины.

Эозинофилы обладают фагоцитарной активностью. Особенно интенсивно они фагоцитируют кокки. Фагоцитарная активность эозинофилов составляет приблизительно 75% от таковой нейтрофилов. Однако из-за малого числа эозинофилов их вклад в общую фагоцитарную активность относительно невелик.

Втканях эозинофилы скапливаются преимущественно в тех органах, где содержится гистамин – в слизистой и подслизистой основе желудка и тонкого кишечника, в легких. Здесь их число превышает содержание в крови в 200-300 раз. Эози-

нофилы захватывают гистамин и разрушают его с помощью особого фермента ги-

стаминазы. В составе эозинофилов находится фактор, тормозящий выделение гистамина тучными клетками и базофилами. Эозинофилы играют далеко не последнюю роль в разрушении токсинов белкового происхождения, чужеродных белков и иммунных комплексов.

В эозинофилах содержатся катионные белки, которые активируют компоненты калликреин-кининовой системы и оказывают влияние на свертывание крови. Предполагается, что катионные белки, повреждая эндотелий, играют важную роль при развитии некоторых видов патологии сердца и сосудов.

Установлено, что эозинофилы продуцируют более 20 цитокинов и среди них хемокины, провоспалительные (IL-1, IL-6) и противовоспалительные (IL-4) цитокины.

Содержание эозинофилов резко возрастает при аллергических заболеваниях, когда происходит дегрануляция базофилов и выделение анафилактического хемотаксического фактора, который привлекает эозинофилы. При этом эозинофилы выступают как "чистильщики", фагоцитируя и инактивируя продукты, выделяемые базофилами.

При тяжело протекающих инфекционных заболеваниях число эозинофилов резко снижается, а иногда при подсчете лейкоцитарной формулы они вообще не выявляются (развивается анэозинопения). Появление в мазке крови эозинофилов считается хорошим прогностическим признаком и получило образное наименование розовой (по цвету эозинофила) зари выздоровления.

Моноциты живут в циркуляции от 36 до 104 часов, а затем уходят в ткани, где образуют обширное семейство тканевых макрофагов, конкретные характеристики которых варьируют в широких пределах и зависят от того, на какой территории оседает блуждающий периферический макрофаг – моноцит. Моноциты и макрофаги вместе образуют систему мононуклеарных фагоцитов (СМФ). Следует заметить, что клетки, объединяемые в фагоцитирующую систему, включают костномозговые предшественники, пул циркулирующих в крови моноцитов и органо- и тканеспецифические макрофаги. За 1 час из крови в ткани переселяется 7 106 моноцитов.

Функции моноцитов и макрофагов весьма многообразны. Они являются чрезвычайно активными фагоцитами, распознают Аг и переводят его в так называемую иммуногенную форму, играют существенную роль в противоинфекционном и противораковом иммунитете, а также в метаболизме липидов и железа, синтезируют отдельные компоненты системы комплемента и факторы, принимающие участие в со- судисто-тромбоцитарном гемостазе, процессе свертывания крови и растворении

60